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ABSTRACT  

 

Identification, Distribution and Control of an Invasive Pest Ant, 

Paratrechina sp. (Hymenoptera: Formicidae), in Texas. (August 2008) 

Jason Michael Meyers, B.S., Southwest Missouri State University; 

M.S., University of Arkansas 

Chair of Advisory Committee: Dr. Roger Gold 

 

  Invasive species are capable of causing considerable damage to natural 

ecosystems, agricultures and economies throughout the world. These invasive species 

must be identified and adequate control measures should be investigated to prevent and 

reduce the negative effects associated with exotic species. A recent introduction of an 

exotic ant, Paratrechina sp. nr. pubens, has caused tremendous economic and ecological 

damage to southern Texas. Morphometric and phylogenetic procedures were used to 

identify this pest ant, P. sp. nr. pubens, to Southern Texas. The populations in Texas 

were found to be slightly different but not discriminating from P. pubens populations 

described in previous literature. Analysis of the distribution and expansion of P. sp. nr. 

pubens found numerous geographically discrete populations and moderately expanding 

territories. These expansion rates were determined to be ~20 and ~30 m per mo for a 

neighborhood and industrial area, respectively. 

 Several laboratory and field control strategies were implemented for control of 

this intensely pestiferous species. Dinotefuran exhibited high laboratory efficacy against 
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P. sp. nr. pubens, while treatments using novaluron were inconclusive. The use of 

expanded-use Termidor® demonstrated trends in these data that suggest it as the 

treatment of choice. Other field treatments, such as Termidor and Top Choice®, 

Termidor and Advance Carpenter Ant BaitTM, and Transport® and Talstar® G, did not 

attain the success found in the expanded-use Termidor treatment. Most treatments 

examined were determined ineffective against high populations of P. sp. nr. pubens. 

Additional and more intensive population management regimes should be investigated. 

Abating further P. sp. nr. pubens population proliferation to other regions will only be 

realized from additional control research supplemented with state and federal 

interdiction policies.



 v

DEDICATION 

I wish to thank my parents, Harlan and Cathy Lupton, for putting up with me and 

all the times I needed advice on life. Without them this would have truly not been 

possible. Mom, thank you for always being there for me, loving me, and looking out for 

me. Dad, thank you for instilling a hard work ethic in me and for always doing what was 

right. Kelsi, thank you for reminding me to be young and silly; two things I seem to do 

very well. 

I dedicate this dissertation to my family, Harlan, Cathy and Kelsi Lupton. 

 

 

Proverbs 6:6-8 
Go to the ant, O sluggard; 

Observe her ways and be wise, 
It has no commander, 
No overseer or ruler, 

Yet it stores its provisions in summer, 
And gathers its food at harvest. 

 

Proverbs 30: 24-25 
Four things are small on the earth, 

But they are exceedingly wise: 
The ants are not a strong folk, 

But they prepare their food in the summer. 
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CHAPTER I 

 

INTRODUCTION 

 

Invasive species represent a major threat to the world’s biodiversity (Wilcove et 

al. 1998, UCS 2001), agriculture (Hallman and Schwalbe 2002), economy (Pimental et 

al. 2000), and unknown impacts on native ecosystems. These non-endemic organisms 

have caused an estimated $137 billion in damage per year in the United States alone 

(Pimental et al. 2000). With the current global emphasis on human commerce, it is 

incumbent upon scientists to increase biological invasion research. Identification of 

these threats is imperative to prevention and subsequent bioinvasive control of 

successful events. Literature is replete with articles regarding management of 

bioinvasions with focal points on prediction (Pimm 1989, Moller et al. 1993, Kolar and 

Lodge 2001, USDA APHIS 2004) or prevention (Reichard 1997, Leung et al. 2002, 

Simberloff 2003) of invasive events. Inherently placed at the foundation of such 

interdiction is identification of non-indigenous species as early as possible. Prevention 

and control are resources that are capable of decreasing the threat that exotic species 

pose.  

A recent successful introduction of an invasive ant species, Paratrechina sp. nr. 

pubens to Texas, U.S.A., has created numerous economic and ecological concerns. Field 

observations suggest that companion animals have also acted abnormally in the presence  

___________________ 
This dissertation follows the style of Journal of Economic Entomology.  

 



 2

of this ant pest and there have been unknown effects on indigenous arthropod and small 

vertebrate fauna. Preliminary field observations also indicate that a biotic 

homogenization of formicid species including undocumented adverse affects to other 

taxonomic arthropod groups are possible. Similar unicolonial invasive ant species that 

may exist in high densities, the Argentine ant, Linepithema humile, and the yellow crazy 

ant, Anoplolepis gracilipes, have adversely impacted native systems in New Zealand 

(Harris 2002) and Christmas Island (Abbott and Green 2007), respectively. L. humile has 

caused adverse effects on ant diversity (Human and Gordan 1996, Holway 1999), 

abundance and diversity of other invertebrates (Cole et al. 1992, Way et al. 1992, 

Human and Gordon 1997), vertebrate abundance (Suarez et al. 2000), pollination (Buys 

1987, Visser et al. 1996), seed dispersal and regeneration (Bond and Slingsby 1984, 

Giliomee 1986), and decomposition and nutrient cycling (Ward 1987, De Kock 1990, 

Folgarait 1998). 

In certain geographical areas, Paratrechina species (Formicidae) possess abilities 

or characteristics for successful invasions into non-indigenous areas. Therefore, this 

group can potentially cause more confusion regarding its species composition. Because 

of morphological similarity (overlap), many taxonomic groups of insects can be 

indistinct at the species level. Ant taxonomic literature is rife with such occurrences. The 

state of Paratrechina taxonomy was once described as “depressing” (Creighton 1950).  

The revision of Paratrechina from the continental United States (Trager 1984) offered 

some reprieve from this confusion; however, the morphological ambiguity of 

Paratrechina species continues to sustain confusion among ant taxonomists.  
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A species-specific identification of P. sp. nr. pubens populations in Texas 

remains to be completed. This exotic pest species has successfully invaded an industrial 

area near Houston, Texas in 2002. Despite efforts from ant taxonomy experts (J. Trager, 

ant taxonomist, Shaw Nature Reserve; J. Cook, biology professor, Sam Houston State 

University), morphological and behavioral similarities of P. sp. nr. pubens populations 

from Texas, P. pubens, and P. fulva have caused an identification stalemate. As a 

consequence, a study will be conducted to elucidate the specific identification using 

morphological comparisons of the populations found in Texas and a previous description 

of P. pubens (Trager 1984). Preliminary comparisons noted morphometric differences in 

the populations of Texas and the previously described P. pubens. However, these 

findings were inconclusive as to its definitive identification as P. pubens or an 

undescribed species. As a result the Texas populations are designated as P. sp. nr. 

pubens.  

Since its introduction in 2002, P. sp. nr. pubens has spread to numerous locations 

surrounding the greater Houston, TX area. Preliminary investigations indicate that the 

spread of Paratrechina sp. nr. pubens in non-urban areas is likely to occur at higher 

rates. Territorial expansion of a close taxonomic relative, P. fulva, has been known to 

occur at ca. 100 m per mo with rivers as the only geographical barrier to advancement 

(Zenner-Polania 1990). Expansion of a similar unicolonial ant, L. humile has been 

variably reported from 1.3 (Holway 1998b), 5.5 (Fluker and Beardsley 1970), 8.3 

(Erickson 1971), 22.8 (Pasfield 1968), to 62.5 m per mo (Krushelnycky et al. 2004). 

These findings have been greatly dependent upon landscape suitability for L. humile. 
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Landscape suitability estimations will help to develop accuracy regarding potential 

geographical invasions and subsequent economic and ecological damage assessments of 

P. sp. nr. pubens.  

Invasive social insects can create ecologically devastating results (Moller 1996, 

Chapman and Bourke 2001, Holway et al. 2002). These same social behaviors of ants 

create a weakness that can be exploited during the control process. Shared resources, 

trophallaxis, cannibalism, and grooming are all avenues for behavioral exploitation of 

active ingredient (AI) treatments. This is particularly evidenced by the horizontal 

transmission of pesticides, as has been observed in cockroaches (Kopanic and Schal 

1999), termites (Ibrahim et al. 2003) and other ants (Soeprono and Rust 2004). Proficient 

invasions by social insects often encompass large geographical regions, are detrimental 

to agricultural systems and natural communities, and are expensive to control (Vinson 

1986, Vander Meer et al. 1990, Williams 1994). The ease of application of aerially 

applied control measures is a desirable character for a management program for invasive 

species. The idea that baits could not only be used exclusively, but also as integration 

into an overall management program is certainly a reasonable scientific objective. These 

programs have been historically evaluated (e.g. Mirex against red imported fire ant, 

Solenopsis invicta) and more recently for termites as “Operation Full Stop” for the 

Formosan subterranean termite, Coptotermes formosanus, in New Orleans, Louisiana 

(Ring et al. 2001).  

Containment of an early detected invasive species may afford time for research 

to conclude successful management or eradication techniques (Krushelnycky et al. 
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2004). It is imperative that basic science be completed regarding control of P. sp. nr. 

pubens.  

The use of baits for eradication of ants has been reviewed (Stanley 2004). The 

use of baits has proven successful against other invasive species behaviorally similar to 

P. sp. nr. pubens. Unicolonial ants have been successfully controlled despite high 

densities, such as with L. humile (Krushelnycky et al. 2004) and the yellow crazy ant, 

Anoplolepis gracilipes (Abbott and Green 2007). 

Despite repeated informative communications regarding P. sp. nr. pubens, there 

are no current federal expansion-preventing measures in place (Tony Koop, pers. comm., 

botanist, New Pest Advisory Group). Much of these efforts have been hampered by the 

confusion regarding the species specific-identification of P. sp. nr. pubens.  Although 

biological control efforts against P. sp. nr. pubens have been considered, there are risks 

associated with the potential for permanent ecological change (Simberloff and Stiling 

1996). These introduced species intended for biological control of pest species may not 

have adverse effects exclusively on their intended target (Simberloff 1992). A species 

taxonomically similar to P. sp. nr. pubens, P. fulva, was introduced to control venomous 

snakes in Colombia, South America; however, had unintended consequences, creating 

biotic homogenizations of the arthropod community in addition to economic losses 

(Zenner-Polania 1990). 

This research was intended to answer basic scientific questions regarding 

identification, distribution and control of P. sp. nr. pubens. Morphological and 

phylogenetic identification of P. sp. nr. pubens was conducted. Distribution and 
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geographical expansion of P. sp. nr. pubens was completed in South Texas. This 

research also included laboratory and field evaluations of control strategies involving 

novel insecticides, baiting, and multiple control tactics. This research will provide a 

foundation for baseline scientific knowledge of this incredible pest, P. sp. nr. pubens, 

with the hopes to propel future intensive studies that will explore and exploit its behavior 

and biology for containment and possible eradication. 
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CHAPTER II 

 

MORPHOMETRIC ASSESSMENT OF Paratrechina SP. NR. pubens 

(HYMENOPTERA: FORMICIDAE) POPULATIONS IN TEXAS 

 

Introduction 

With the current global emphasis on human commerce, it is incumbent upon 

scientists to increase biological invasion research. Invasive species represent a major 

threat to U.S. biodiversity (Wilcove et al. 1998, UCS 2001) agricultural industries 

(Hallman and Schwalbe 2002) and economy (Pimental et al. 2000). Identification of 

these threats is imperative to prevent bioinvasions or control of successful events. 

Literature is replete with articles regarding management of bioinvasions with focal 

points on prediction (Pimm 1989, Moller et al. 1993, Kolar and Lodge 2001, USDA 

APHIS 2004) or prevention (Reichard 1997, Leung et al. 2002, Simberloff 2003) of 

invasive events. Inherently placed at the foundation of such interdiction is identification 

of non-indigenous species as early as possible.  

Several Paratrechina species have demonstrated invasive behavior within the 

U.S. including: P. bourbonica (Forel), P. flavipes (F. Smith), P. fulva (Forel), P. 

guatamalensis (Forel), P. longicornis (Latreille), P. pubens (Forel) (Trager 1984a), and 

P. vaga (Forel) (Wilson and Taylor 1967). Paratrechina species are relatively successful 

tramp ants whose opportunistic behavior allows them to overcome adverse conditions in 

moist or dry environments. Other species (P. fulva and P. longicornis) of this genus have 
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aggressively out-competed other non-homopteran insects, resulting in ecological 

dominance (Zenner-Polania 1994, Wetterer et al. 1999, respectively).  

In particular, P. pubens invaded the U.S. in southern Florida (Trager 1984a) and 

now is found throughout the state (Warner and Scheffrahn 2004). Paratrechina pubens 

may have originated from the Caribbean archipelago based on type locality specimens 

collected from St. Vincent Island, Lesser Antilles (Forel 1893, Trager 1984a). The ant is 

now located in several other Caribbean island countries and Florida, U.S. Among these 

are Anguilla, Guadalupe, Puerto Rico (Trager 1984a), Bermuda (Wetterer 2006, 2007), 

and St. Croix (Wetterer unpublished data). Introduction of P. pubens to the United States 

was first described in 1953 (Trager 1984a) in Coral Gables and Miami, Florida. Potential 

for further spread is great among other island nations and mainland countries and states 

within and surrounding the Gulf of Mexico.  

Populations of a species of Paratrechina nr. pubens have been discovered in 

Texas. The incipient population was found by a pest control operator in 2002 in 

Pasadena, Texas in an industrial area located ~8 km south of the Port of Houston (Harris 

County, TX). Immense populations of this problematic ant were found as soon as the 

following season. In 2005, this ant was observed in many different habitats; including 

trees, fallen branches, soil cracks, within the soil, and outside and within buildings and 

structures. Overwhelming numbers of this ant could be found at almost any location on 

the property. Since this time, new populations have arisen at alarming rates. These new 

populations were discovered by various pest control operators and Extension agents 
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throughout the region. These populations were found in and around homes, businesses, 

wooded areas, and grassed fields. 

Anecdotal reports have indicated that this ant has caused electrical shortages in a 

variety of apparatuses in businesses and homes, including, but not encompassing, phone 

lines, air conditioning units, chemical-pipe valve computers, and sewage lift pump 

stations. Additional residential complaints have also included rare but painful bites with 

occasional physiological reaction and abnormal behavior of companion animals in the 

presence of higher levels of P. sp. nr. pubens infestation. Residents and businesses alike 

have resorted to costly and unsuccessful consumer remedial control. These unguided and 

ineffective control measures by untrained and inexperienced citizens have been 

ineffective and are of major concern due to their negative environmental impact to the 

urban ecology of affected areas. 

Ecological impacts of P. sp. nr. pubens are not yet known. However, preliminary 

field observations minimally suggest a homogenization of ant fauna and/or reduction or 

displacement of native ant populations, /and the invasive red imported fire ant, Solenopsis 

invicta. As the spread of P. sp. nr. pubens continues, this pest will likely create more 

problems in other geographical areas. These problems include further spread outside the 

currently infested state of Texas creating additional biotic homogenization and/or 

unknown adverse ecological impacts.  

Confusion regarding identification of the populations in Texas has remained 

despite samples examined by experts (J. Trager, ant taxonomist, Shaw Nature Reserve; J. 

Cook, professor, Sam Houston State University). Despite established and intermittently 
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dense populations of P. pubens in Florida (Warner and Scheffrahn 2004) and Caribbean 

islands (Wetterer 2006, 2007, unpublished data), this ant has not become established in 

other areas of the U.S. It is curious as to the reason(s) for lack of previous successful P. 

pubens invasions. This questions the validity of the taxonomic synonymy of the 

populations of Florida and Texas. Intraspecific variation of P. pubens populations from 

different clinal regions may explain some, if not all, of the morphological and biological 

differences viewed between earlier (Trager 1984a) and current descriptions of this 

species. However, these differences may also suggest the current Texas populations are 

an undescribed species of P. pubens, P. fulva, or an unknown synonymy of a previously 

described species.  

Despite repeated informative communications regarding P. sp. nr. pubens, there 

are no current federal expansion-preventing measures in place (Tony Koop, pers. comm., 

botanist, New Pest Advisory Group). Much of these efforts have been hampered by the 

confusion regarding the species specific-identification of P. sp. nr. pubens. 

The use of morphometric differentiation for species identification has been used 

for social insects such as formicids (Wang and Lester 2004, Steiner et al. 2006) and 

termites (Hostettler et al. 1995, Heinstchel et al. 2006). This study compares the 

morphologies of P. sp. nr. pubens populations in Texas to previously described 

populations of P. pubens (Trager 1984a). Given the morphological similarities and 

subsequent identification confusion, this study intends to alleviate concern regarding 

species-specific identification of these populations. 
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Materials and Methods 

Material Examined. Morphometric and morphology data for this study were 

from specimens of two colonies collected in a grassed field in Pasadena, TX in May 

2005.  Measurements and morphological observations were made of 16 workers and one 

male alate from ‘Texas 1’ colony, while 16 workers constituted the specimens from 

‘Texas 2’ colony. Male alates were rare in previously collected colonies. For this reason, 

a third colony from Pasadena, TX was collected in February 2008 when males are much 

more plentiful. Some of the male alates (n = 5) of this population were collected and 

described (total male alates, n = 6). For the description of this species, several 

morphological measurements (Table 2.1) were taken per Trager (1984a). Morphometric 

and indices data for additional populations were taken from a previous study (Trager 

1984b). These character data taken for worker and/or male alates included:  

1. HL = Head length 
2. HW = Head width 
3. SL = Scape length 
4. EL = Eye length 
5. PW = Pronotal width 
6. MCL = Longest macrochetae of pronotum 
7. WL = Thorax length 
8. GL = Gaster length 
9. TL = Total length 
10. FL = Femur length 
11. SM = # scape macrochetae 
12. PM = # pronotal macrochetae 
13. MM = # mesonotal macrochetae 
14. CI = (HWx100)/HL 
15. OI = (ELx100)/HL 
16. SI = (SLx100)/HL 
17. FI = (FLx100)/HL 

Full definitions of measurements can be found per Trager (1984a, b).  
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When statistically analyzing populations of P. pubens and P. sp. nr. pubens 

worker morphometrics, P. pubens data (“Trager”) (Trager 1984b) from Florida 

populations were combined as one population (n = 14) and data from all other states were 

combined as one population (n = 20). “Other” states included P. pubens collected from 

New York, Puerto Rico, and Washington D.C. P. sp. nr. pubens from Texas was treated 

as a third population (n = 32). Missing values within analyzed individuals were not 

evaluated in the canonical discriminate statistics. 

To compare measurement and index means among the populations, multivariate 

analysis of variance (MANOVA) was conducted. Post-hoc comparisons were performed 

using Bonferroni means comparison of worker morphometrics. Wilks’ λ was used to 

determine significant differences among means of morphometric characters. To 

determine discriminating characters, an ANOVA was run in discriminant function 

analysis using Wilks’ λ to test the equality of group means for the worker and male alate 

characters. To find differences among the groups of worker populations, a canonical 

discriminant analysis was run. A paired t-test was used to evaluate differences among 

means between male alate P. sp. nr. pubens (Texas) and P. pubens (“Trager”) (Trager 

1984b). All statistical analyses were run using SPSS (SPSS Inc. 2005). 

Distribution. A preliminary biogeographical distribution for the purposes of 

species description of this pest was conducted. Specimens of P. sp. nr. pubens were 

discovered by pest control operators, extension agents, or residents. Suspected specimens 

were mailed to the Center of Urban and Structural Entomology, Texas A&M University 

and examined by JMM. If these specimens were unable to be mailed, JMM inspected and 
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collected specimens of the potentially infested facility or landscape. Preliminary 

geographically specific distribution of P. sp. nr. pubens was conducted using baited area 

monitor traps. 

 

Results 

P. sp. nr. pubens were found in grassed and wooded fields, leaf litter, under 

covered objects such as porous stones or logs, esp. in termite-inhabited logs, trailing in 

mass on trees and also outside and within buildings. These ants were typically found in 

remarkable numbers with trails as wide as 10 cm. 

Material Examined. All measurements reported in mm. 

Worker. A composite description of the Texas colonies is given. HL 0.68-0.77, 

HW 0.55-0.64, SL 0.75-0.87, EL 0.16-0.20, PW 0.40-0.48, MCL 0.18-0.22, WL 0.84-

0.97, FL 0.58-0.69, SM 19-26, PM 8-13, MM 2-3, CI 77.27-85.29, OI 21.74-28.13, SI 

103.03-119.70, FI 82.86-98.44,  (n = 32) (Table 2.1).  

Similar morphological results were confirmed (J. Trager, pers. comm.) from 

worker and male alate individuals of the colonies described above. These workers are 

very similar to previous character descriptions of P. pubens (Trager 1984b, J. Trager, 

pers. comm.). Medium-sized, reddish-brown with dense pubescence on thorax and gaster 

with flexuous, light brown macrochaetae. In regards to P. pubens, P. sp. nr. pubens has a 

subcordate head, and is not as pubescent on the thorax or gaster. Most P. sp. nr. pubens 

measurements were significantly (Wilke’s λ = 0.006, F = 4.17, P < 0.001) smaller than 

previously described P. pubens (Trager 1984b) (Tables 2.1-3, Fig. 2.1). Morphological



 

Table 2.1. Multivariate ANOVA of worker morphometrics from P. pubens and P. sp. nr. pubens populations. 

 Mean (SE ±) worker measurement (mm) of P. pubens and P. sp. nr. pubens populationsabc 

Population HL HW SL EL PW MCL 

Washington D.C.d 0.78 (0.007) a 0.70 (0.008) a 0.95 (0.008) a 0.20 (0.002) a 0.49 (0.006) b 0.25 (0.004) b 

Floridad 0.80 (0.006) a 0.71 (0.006) a 0.97 (0.007) a 0.20 (0.002) a 0.54 (0.005) a 0.27 (0.003) a 

New Yorkd 0.78 (0.011) a 0.66 (0.012) ab 0.95 (0.013) a 0.19 (0.004) ab 0.48 (0.009) bc 0.25 (0.007) b 

Puerto Ricod 0.81 (0.009) a 0.71 (0.010) a 0.97 (0.011) a 0.20 (0.003) a 0.51 (0.008) b 0.26 (0.005) ab

Texas 1 0.74 (0.006) b 0.61 (0.006) c 0.82 (0.007) b 0.18 (0.002) b 0.45 (0.005) c 0.20 (0.003) c 

Texas 2 0.70 (0.006) c 0.57 (0.006) c 0.79 (0.007) b 0.18 (0.002) bc 0.42 (0.005) d 0.20 (0.003) c 
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Table 2.1. Continued. 

 Mean (SE ±) worker measurement (mm) of P. pubens and P. sp. nr. pubens populationsabc 

Population WL FL SM PM MM CI 

Washington D.C.d 1.02 (0.010) a 0.77 (0.006) a 26.40 (0.79) a 10.70 (0.45) ab 3.80 (0.21) ab 87.20 (0.56) ab

Floridad 1.05 (0.008) a 0.79 (0.005) a 29.87 (0.79) a 11.87 (0.37) a 4.45 (0.17) a 88.53 (0.46) a 

New Yorkd 1.01 (0.015) a 0.75 (0.010) a 24.75 (1.52) ab 11.00 (0.71) ab 3.25 (0.33) bc 84.75 (0.88) bc

Puerto Ricod 1.03 (0.013) a 0.78 (0.008) a 21.50 (1.24) b 10.33 (0.58) ab 4.67 (0.27) a 84.83 (0.72) ab

Texas 1 0.91 (0.008) b 0.67 (0.005) b 22.44 (0.76) b 10.44 (0.36) ab 2.13 (0.17) cd 82.44 (0.44) c 

Texas 2 0.87 (0.008) c 0.64 (0.005) c 21.44 (0.76) b 10.06 (0.36) b 2.00 (0.17) d 82.06 (0.44) c 
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Table 2.1. Continued. 
 Mean (SE ±) worker measurement (mm) of P. 

pubens and P. sp. nr. pubens populationsabc 

Population OI SI FI 

Washington D.C.d 25.60 (0.34) a 119.10 (0.97) a 96.30 (0.82) a 

Floridad 25.00 (0.28) ab 121.13 (0.79) a 97.67 (0.67) a 

New Yorkd 24.75 (0.54) ab 121.75 (1.54) a 96.25 (1.30) a 

Puerto Ricod 24.83 (0.44) ab 120.00 (1.26) a 95.67 (1.06) a 

Texas 1 24.06 (0.27) b 111.88 (0.77) b 91.19 (0.65) b 

Texas 2 24.44 (0.27) ab 112.69 (0.77) b 91.31 (0.65) b 

aFull measurement definitions can be found per Trager (1984a, b). HL = Head length, HW = Head width, SL = Scape length, 
EL = Eye length, PW = Pronotal width, MCL = Longest macrochetae of pronotum, WL = Thorax length, FL = Femur length, 
SM = # scape macrochetae, PM = # pronotal macrochetae, MM = # mesonotal macrochetae, CI = (HWx100)/HL, OI = 
(ELx100)/HL, SI = (SLx100)/HL, FI = (FLx100)/HL. 
bSame letters following means within the column are not significantly different (MANOVA, Bonferoni, Wilke’s λ, P = 0.05). 
 cWilke’s λ = 0.006, F = 4.17, P < 0.001.  
dData from Trager (1984b).
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Table 2.2. Paired t-test of male alate morphometrics from P. pubens and P. sp. nr. pubens populations. 

 Mean (SE ±) male alate measurement (mm) of P. pubens and P. sp. nr. pubens populationsab 

N = 6 HL HW SL EL WL GL SM CI OI SI TL 

Texas 0.59 

(0.005) 

0.60 

(0.01) 

0.74 

(0.02) 

0.26 

(0.009)

1.02 

(0.03) 

0.74 

(0.02) 

8.67 

(0.76) 

101.21 

(1.49) 

44.09 

(1.12) 

123.76 

(2.58) 

2.36 

(0.04) 

Tragerb 0.68 

(0.006) 

0.65 

(0.01) 

0.96 

(0.02) 

0.27 

(0.004)

1.10 

(0.02) 

1.19 

(0.54) 

16.17 

(1.30) 

95.67 

(0.49) 

40.83 

(0.31) 

143.00 

(0.68) 

2.96 

(0.07) 

F value (P value) 13.92 

(0.000) 

5.23 

(0.003)

14.99 

(0.000)

1.29 

(0.253)

4.70 

(0.005)

9.75 

(0.000) 

4.34 

(0.007)

4.27 

(0.008)

3.39 

(0.019)

7.50 

(0.001)

16.79 

(0.000)

aFor measurement definitions see below Table 1. 
bData from Trager (1984b). 
cAll analyses are significant at α = 0.05.
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Table 2.3. Canonical discriminant analysis of caste morphometrics for P. sp. nr. pubens 

and P. pubens populations. 

 Tests of Equality of Group Means 
Character Caste Wilks’ λ F P 

Worker 0.311 69.91 0.000 HL 
Male 0.078 117.44 0.000 

Worker 0.194 130.81 0.000 HW Male 0.446 12.41 0.006 
Worker 0.116 239.52 0.000 SL Male 0.070 133.37 0.000 
Worker 0.381 51.28 0.000 EL Male 0.911 0.98 0.345 
Worker 0.188 136.04 0.000 PW Male - - - 
Worker 0.144 187.07 0.000 MCL Male - - - 
Worker 0.189 135.23 0.000 WL Male 0.623 6.05 0.034 
Worker - - - GL Male 0.139 61.73 0.000 
Worker 0.119 233.51 0.000 FL Male - - - 
Worker - - - TL Male 0.157 53.63 0.000 
Worker 0.521 29.00 0.000 SM Male 0.288 24.76 0.001 
Worker 0.844 5.81 0.005 PM Male - - - 
Worker 0.297 74.44 0.000 MM Male - - - 
Worker 0.304 72.12 0.000 CI Male 0.445 12.46 0.005 
Worker 0.847 5.70 0.005 OI Male 0.559 7.90 0.018 
Worker 0.343 60.23 0.000 SI Male 0.162 51.82 0.000 
Worker 0.435 40.91 0.000 FI Male - - - 

aAnalyses are significant at α = 0.05.
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Figure 2.1. Canonical discriminant function analysis of male alate morphometrics for P. 

pubens (Florida and Other) and P. sp. nr. pubens (Texas) populations. Function 1 (Eigen 

value = 16.35, % variance = 85.2, Canonical correlation = 0.97; Wilks’ λ = 0.02, χ = 

235.23, df = 30, P < 0.001), Function 2 (Eigen value = 2.85, % variance = 14.8, 

Canonical correlation = 0.86; Wilks’ λ = 0.26, χ = 75.44, df = 14, P < 0.001). 
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dissimilarity alone does not necessarily indicate P. sp. nr. pubens as an undescribed 

species. 

Male. (n = 6) Cuspides ca. ¾ length of aedeagus. Very similar to previous 

description of P. pubens (Trager 1984b). 

Male. A composite description of the Texas colonies is given as follows; HL 

0.58-0.62, HW 0.56-0.64, SL 0.67-0.79, EL 0.24-0.30, WL 0.90-1.08, GL 0.69-0.79, SM 

6-11, CI 96.23-105.56, OI 41.51-48.21, SI 115.09-133.33, (n = 6) (Table 2.2). 

These P. sp. nr. pubens males are either P. pubens or very near P. pubens (J. 

Trager, pers. comm.). Males are not decidedly black as those from typical P. fulva 

populations (J. Trager, pers. comm.); however, the setal arrangement on the parameres is 

dissimilar to P. pubens (J. Trager, pers. comm.). These character similarities and 

dissimilarities suggest that there is some variation among populations of P. pubens.  

Biology. Along with the morphological findings, the densities demonstrated by P. 

sp. nr. pubens may also indicate a taxonomic classification of an undescribed species. 

Paratrechina pubens has been previously described as “non-biting” (Warner and 

Scheffrahn 2004). Anecdotal reports have indicated painful ant bites, generally without 

swelling, from the Houston populations as well as P. pubens populations found at the 

Jacksonville Zoo and Gardens, Florida (D. Calibeo-Hayes, pers. comm., graduate 

student, University of Florida). 

The paired t-tests of male alate characters revealed significant differences 

between the means of the two populations (“Trager” and Texas) (Table 2.2). The only 

character for male alates of the populations that was not significant was EL. 
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Canonical discriminant analysis identified differences among the groups based 

on these worker data (Fig. 2.1). These groups found that “Other”, Florida (Trager 

1984b), and Texas populations were significantly different (df = 2, 63; Function 1: Eigen 

value = 16.35, % variance = 85.2, canonical correlation = 0.97; Wilks’ λ = 0.02, χ = 

235.23, df = 30, P < 0.001 and Function 2: Eigen value = 2.85, % variance = 14.8, 

canonical correlation = 0.86; Wilks’ λ = 0.26, χ = 75.44, df = 14, P < 0.001). No 

significant difference was found between the “Other” and “Florida” groups of the 

populations. 

The ANOVA tests of equality of group means indicated nearly all characters as 

significantly discriminating (Table 2.3). The closer the Wilks’ λ value is to 0, the more 

important the independent variable becomes to the discriminant function. The most 

discriminating characters for workers were; SL (Wilks’ λ = 0.116), FL (Wilks’ λ = 

0.119), and MCL (Wilks’ λ = 0.144). There were no significantly excluded characters 

for the workers. The most discriminating characters for male alates were; SL (Wilks’ λ = 

0.70), HL (Wilks’ λ = 0.078), and GL (Wilks’ λ = 0.139). The only significantly 

excluded character for male alates was EL. 

Distribution.  Paratrechina pubens has spread significantly since its discovery 

in 2002 and currently encompasses 25 known, geographically discrete populations in 

five counties (Brazoria, Galveston, Harris, Montgomery, and Wharton). Additional and 

more detailed results on distribution and spread of P. sp. nr. pubens are discussed in 

Meyers and Gold unpublished a.  
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Discussion 

Statistical analysis of the morphometric characters among populations of the 

composite worker description for P. pubens (J. Trager 1984b) result in significant 

differences among the various populations (Table 2.1). These differences are not as great 

as the differences found between their composite description and P. sp. nr. pubens. 

Intraspecific variation of morphology among P. pubens populations may be greater than 

previously reported. Based on a composite description I do not deem it statistically 

prudent to differentiate the Texas populations from the previous description of P. pubens 

(J. Trager 1984b). If this statistical procedure was conducted to differentiate species, it 

would likely raise a few of the P. pubens populations from previous findings (J. Trager 

1984b) to the species level.  

 Numbers of mesonotal macrochetae (MM) may offer a diagnosibly distinct 

character to distinguish between P. pubens and P. sp. nr. pubens populations. MM 

means were 2.13 and 2.00 in the TX1 and TX2 colonies, respectively, while previously 

published (Trager 1984b) populations averaged 3.25 - 4.67. Only two (6.25%) 

individuals from the Texas populations exhibited three MM. Given the additional 

statistical disparity of the character and relative ease of character identification, this may 

offer a simple identification character. Although other Paratrechina species within the 

U.S. exhibit this 2-3 MM character, this is a differentiating character between the two 

species in question. Although the test for equality of group means for MM revealed 

significant discrimination of the character (Wilk’s λ = 0.297, P = 0.000), it may not be 

discriminating between the P. sp. nr. pubens and P. pubens populations. Examination of 
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voucher samples from another study (Meyers and Gold unpublished b) of P. pubens 

from Florida, Anguilla, St. Croix, and St. Kitts do not differentiate from the 2-3 MM 

character found in P. sp. nr. pubens populations in Texas. This character would easily 

diagnose the difference between previously described (Trager 1984b) and currently 

described populations. 

 According to the analyses of these data, few measurements need to be taken in 

order to differentiate the populations of P. pubens and P. sp. nr. pubens. Clearly, P. sp. 

nr. pubens is smaller than previously described P. pubens (Trager 1984b). Even though 

morphological dissimilarities are present, species differentiation may not be correct or 

prudent. Intraspecific variation could claim many morphologically discrete species 

descriptions, especially in insects.  

Due to the morphological and biological similarities of P. fulva and P. sp. nr. 

pubens supplementary research of morphological and biological characters of these 

populations should be conducted. Despite a previous, inadequate species description for 

the original concept of P. pubens (Forel 1893), morphological evidence alone does not 

suggest that a new species classification is warranted for the Texas populations. Based 

on the results of this study, it is currently recommended that our assessments be 

combined with previous findings (Trager 1984a) until a more comprehensive study is 

done. This would result in the expansion of the morphometric ranges for P. pubens. 

These results may indicate a geographical intraspecific variation of P. pubens, frequently 

observed in insect species. Given the statistical disparity between the two Texas 

colonies, more populations should be analyzed to further examine intraspecific variation 
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in this region. It remains a distinct possibility that the Texas populations of P. sp. nr. 

pubens are a an undescribed species. There are currently no known or described 

subspecies within P. pubens (Bolton et al. 2006).  

Many theories of successful invasion events have been described. Identification 

of the avenue by which this species has invaded may assist in preventing further 

invasions of this species. The successful invasion of P. sp. nr. pubens in Texas and 

extreme densities may indicate an ideal ecosystem for the species. It may also indicate a 

total enemy release (Keane and Crawley 2002, Mitchell and Power 2003) and/or ideal 

scenario for biotic release hypothesis (Simberloff 1986, 1989). Paratrechina pubens 

type locality is an island ecosystem (Caribbean archipelago) (Forel 1893). This would 

place it in a rare circumstance as type locality island species invading and dominating a 

continental ecosystem. To the contrary, P. fulva type locality is continental (Brazil) 

(Mayr 1862) and as such would place it as a continental species invading a continental 

ecosystem. 

This study may represent the first record of P. pubens in Texas and demonstrates 

yet another invasive species (the Formosan subterranean termite, Coptotermes 

formosanus and Asian cockroach, Blattella asahinai) which has produced negative 

consequences for the urban areas in which they have established (Dorward 1956, Austin 

et al. 2007, respectively). The United States is a non-indigenous geographical area of P. 

pubens (Forel 1893, Trager 1984a). The Texas populations constitute a new and 

established geographical location for either P. pubens or P. fulva. This study could stand 

as the initial identification of invasion history for P. pubens or a renewed invasion of P. 
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fulva in Texas (Trager 1984b). The near exponential spread is unlikely to be abated 

unless interdiction policies are put in place or significant research is conducted on 

preventing or slowing their progress. 

Results of this study and pers. comm. (J. Trager and J. Cook) may suggest 

identification of this ant as P. pubens, P. fulva, or an undescribed species of 

Paratrechina of North America. The need for a cosmopolitan taxonomic key of 

Paratrechina is critical for the identification of this morphologically ambiguous and 

invasively competent group. More comprehensive comparative morphological analysis 

of these taxa and type locality P. pubens and P. fulva populations should be conducted to 

provide a more competent identification of this ant. Additionally, phylogenetic analysis 

should be conducted on these populations and other type locality to elucidate identities 

of populations with indistinct morphologies. This analysis may also reveal these Texas 

populations as an undescribed species that are morphologically indistinct. 

In the most established portions of its range, such as the site of original known 

infestation, no other ant species were found on or in the traps, including the typically 

common red imported fire ant, Solenopsis invicta Buren. To the contrary, at any trapping 

site not placed within the strongly established areas of P. sp. nr. pubens, S. invicta was 

found in nearly every trap. Peripheral (areas without strong P. sp. nr. pubens 

establishment) traps often contained a diverse collection of ant species. These results 

may indicate rapid establishment of ecological dominance in the area of infestation. 

Until more comprehensive sampling and/or diagnostic evidence is discovered for 

its current position; the taxonomic identity of P. sp. nr. pubens populations in Texas will 
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remain unchanged. More research regarding behavior, mating compatibility, phylogeny, 

or other analyses of these populations should be conducted before raising the P. sp. nr. 

pubens Texas populations to an undescribed species. 

 The biological and temporal caveats associated with successful invasive 

populations of social arthropods are quite complex. It is a rare scientific opportunity to 

follow the incipient biology of an unexpected, invasive, and dominant pest. Information 

and conclusions gained from this and future studies on P. pubens populations of Texas 

may assist research of other impending arthropod invaders, especially social insects.
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CHAPTER III 

 

MOLECULAR PHYLOGEOGRAPHY OF AN INVASIVE Paratrechina SP.  

AND OTHER Paratrechina SPP. FROM VARIOUS COUNTRIES 

 

Introduction 

Many insect species descriptions are based on distinct morphology alone. Ant 

taxonomic literature is rife with such occurrences. The state of Paratrechina taxonomy 

was once described as “depressing” (Creighton 1950).  The revision of Paratrechina 

from the continental United States (Trager 1984a) has offered some reprieve from the 

confusion, but the morphological ambiguity of Paratrechina species continues to sustain 

confusion among ant taxonomists. Due to their penchant for successful invasions into 

non-indigenous areas, species of Paratrechina can potentially cause more confusion 

regarding the species present in certain geographical areas. 

Since the revision (Trager 1984a), synanthropic behaviors of Paratrechina 

species (Hölldobler and Wilson 1990), have caused numerous invasive events which have 

occurred into and throughout the U.S. including: P. bourbonica (Forel), P. flavipes (F. 

Smith), P. fulva (Forel), P. guatamalensis (Forel), P. longicornis (Latreille), P. pubens 

(Forel), (Trager 1984a) and P. vaga (Forel) (Wilson and Taylor 1967). There are likely 

many more undocumented occurrences of these Paratrechina invasive events. This 

leaves more questions than answers regarding the current state of Paratrechina species 

existing within the continental U.S. To date, a very successful invasion of P. sp. nr. 
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pubens has been discovered in an industrial area in the Houston, Texas area. Within just a 

few years, this bioinvasion has caused severe economic and ecological harm to the 

geographical area.  

A species-specific identification of P. sp. nr. pubens populations in Texas remains 

to be completed. Despite efforts from ant taxonomy experts (J. Trager, ant taxonomist, 

Shaw Nature Reserve; J. Cook, biology professor, Sam Houston State University), 

morphological and behavioral similarities of P. sp. nr. pubens populations from Texas, P. 

pubens, and P. fulva have caused an identification stalemate. Paratrechina pubens and P. 

fulva are morphologically similar and are in the Complex Fulva of Paratrechina (Trager 

1984a). As a consequence, a study (Meyers and Gold unpublished b) was conducted to 

elucidate the specific identification using morphological comparisons of a previous 

description of P. pubens (Trager 1984a). These comparisons noted significant differences 

between morphometric means of the populations of Texas and the previously described 

P. pubens (Meyers and Gold unpublished b). However, these findings were inconclusive 

as to its definitive identification as P. pubens or an undescribed species and the Texas 

populations remained P. sp. nr. pubens. Despite repeated informative communications 

regarding P. sp. nr. pubens, there are no current federal expansion-preventing measures in 

place (Tony Koop, pers. comm., botanist, New Pest Advisory Group). With no current 

expansion-preventing measures in place for P. sp. nr. pubens (Tony Koop, pers. comm.), 

the spread will likely continue into other non-endemic areas. Much of these efforts have 

been hampered by the confusion regarding the species specific-identification of P. sp. nr. 

pubens.  
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Little research has been conducted in the area of phylogenetic identification of the 

morphologically ambiguous species in Paratrechina. A previous study included the 

analysis of COI sequences which confirmed two Paratrechina morphospecies from a 

collection in Madagascar (Smith et al. 2005). The current study offers supplemental 

analyses of the P. sp. nr. pubens populations in Texas. This study is the first significant 

attempt to answer population identification of different species causing, in part, the 

taxonomic problems of Paratrechina. The phylogeographic relationships of P. sp. nr. 

pubens and P. pubens populations and other Paratrechina species are estimated.  

 

Materials and Methods 

In this study, Paratrechina spp. workers and alates were collected or donated 

from various locations in the United States and Caribbean from 2005 to 2007 (Table 3.1, 

Fig. 3.1). These samples were preserved in alcohol, dried, or frozen at -20ºC. Some 

samples were morphologically identified based on previous descriptions (Trager 1984a) 

while others were identified by specimen donors. The voucher specimens are deposited in 

the Center for Urban and Structural Entomology and Texas A&M University Insect 

Collection (Voucher #672), Department of Entomology, Texas A&M University, College 

Station, TX.  

Polymerase chain reaction (PCR) of a 708 bp region of the mtDNA COI gene was 

conducted using the primers LCO1490-F forward: 5’-

GGTCAACAAATCATAAAGATATTGG-3’ (Simon et al. 1994) and HCO2198-R 

reverse: 5’- TAAACTTCAGGGTGACCAAAAAATCA -3’ (Simon et al. 1994). PCR  
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Table 3.1. Source of formicid samples. 

Species State/Country County/City Accession # 
Aphaenogaster iberica Spain Los Belones DQ074361 
Paratrechina arenivaga Mississippi Coila  
P. faisonensis Mississippi Winston  
 Louisiana Clinton  
P. longicornis Arizona Oracle  
 Louisiana Baton Rouge  
 Texas Baytown  
  Baytown  
  Baytown  
  College Station  
  Pasadena  
  Pasadena  
P. pubens Anguilla Brimegin  
  Shoal Bay  
 Florida Parkland  
 St. Croix Cruban Gorde  
 St. Kitts Bermatt  
P. sp. nr. pubens Texas Deer Park  
  Houston  
  Jacinto Port  
  Manvel  
  Pasadena  
  Pearland  
  Pearland  
P. vividula Alabama Lawrence  
P. sp. Arizona Marana  
  San Simon  
 Madagascar Antsiranana DQ176052 
  Antsiranana DQ176066 
  Antsiranana DQ176124 
  Antsiranana DQ176171 
  Antsiranana DQ176178 
 Texas Bryan  
Tapinoma sessile Texas Deer Park  
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Figure 3.1. Formicid sample locations from various countries and states. Circle size is 

proportional to sample size. 

 

reactions consisted of an initial denaturation of two min at 94ºC, followed by 40 cycles of 

94ºC for 45 s, 46ºC for 45 s and 72ºC for 60 s, and a final extension of five min at 72ºC. 

Amplified DNA from individual ants was purified and concentrated with Amicon 

Microcon PCR centrifugal filter devices (Millipore, Billerica, MA) according to the 

manufacturer’s instructions. Samples were sent to the DNA core sequencing facility at 

The University of Arkansas Medical School DNA Sequencing Facility (Little Rock, AR) 

for direct sequencing in both directions. Sequences used in this study will be submitted to 

GenBank. DNA sequences were aligned using ClustalW (Thompson et al. 1994) within 

BioEdit (Hall 1999).  The best-fitting nucleotide substitution model was chosen 
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according to the general time reversible + gamma (GTR+G) model among 64 different 

models by using the ModelTest version 3.7 (Posada and Crandall 1998) and PAUP* 

4.0b10 (Swofford 2001) programs. Bootstrapping was performed using NJ or MP (1,000 

replicates) to determine the reliability of the obtained topologies. 

Mitochondrial COI sequences of Paratrechina sp. from Madagascar were added 

to the dataset along with DNA sequences of Aphaenogaster iberica from Spain and 

Tapinoma sessile from Texas which were added to act as outgroup taxa. Maximum 

likelihood and unweighted parsimony analysis on the alignments was conducted using 

PAUP* 4.0b10 (Swofford 2001). Gaps were treated as missing characters for all 

analyses. The reliability of trees was tested with a bootstrap test (Felsenstein 1985). 

Parsimony bootstrap analysis included 1,000 resamplings using the Heuristic algorithm 

of PAUP*.  

For Bayesian analysis, the best-fitting nucleotide substitution model was chosen 

as described above. Phylogenetic trees were obtained using Bayesian inference with the 

GTR+G model using Bayesian Evolutionary Analysis Sampling Trees (BEAST) v1.4.2 

software (Drummond and Rambaut 2003). For Bayesian inference, four Markov chains 

run for 106 generations with a burn-in of 2x104 were used to reconstruct the consensus 

tree. 

The P. sp. nr. pubens and P. pubens clades were selected for correlative effects of 

geographic distance and genetic similarity. This correlation was made under the 

assumption that geographic distance can create genetic differentiation. A linear 

regression was plotted using the relationship between Kimura 2-parameter (K2P) 
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(Kimura 1980) genetic distance and geographic distance by using JMP 5.01 (SAS, Cary, 

NC). All geographical relationships were calculated from P. sp. nr. pubens Pasadena, TX 

as a reference point. 

 

Results 

Analysis of COI sequences. A 626-bp region of the mtDNA COI gene was 

sequenced from a total of 34 formicid samples collected (Table 3.1). Of these characters, 

185 (29.6%) were variable and 81 (12.9%) were parsimony-informative. Base 

frequencies were A (29.9%), C (17.7%), G (12.3%), T (40.1%). Neighbor-joining (NJ) 

analysis (Fig. 3.2) revealed nearly identical clades found in Maximum Parsimony (MP) 

and Bayesian analyses. MP resulted in one tree with a length of 616, CI = 0.620, RI = 

0.853 (Fig. 3.3). Bayesian analysis of the formicid samples revealed several distinct  
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Figure 3.2. Neighbor-joining phylogenetic tree. 

 



 35

P. longicornis Baytown, TX 1
P. longicornis Pasadena, TX
P. longicornis Baytown, TX 3
P. longicornis Baytown, TX 2
P. longicornis Oracle, AZ
P. longicornis College Station, TX
P. longicornis Pasadena, TX

Paratrechina sp. Madagascar DQ176171

P. longicornis Baton Rouge, LA
P. pubens Brimegin, Anguilla
P. pubens Shoal Bay, Anguilla
P. pubens Bermatt, St. Kitts
P. pubens Parkland, FL
P. sp. nr. pubens Pearland, TX 2
P. sp. nr. pubens Manvel, TX
P. sp. nr. pubens Pasadena, TX
P. sp. nr. pubens Deer Park, TX
P. sp. nr. pubens Jacinto Port, TX
P. sp. nr. pubens Houston, TX
P. sp. nr. pubens Pearland, TX 1
P. pubens Cruban Gorde, St. Croix
Paratrechina sp. Madagascar DQ176178
Paratrechina sp. Madagascar DQ176124
Paratrechina sp. Madagascar DQ176066
Paratrechina sp. Madagascar DQ176052
P. arenivaga Coila, MS
P. faisonensis Winston, MS
P. faisonensis Clinton, LA
P. vividula Lawrence Cty., AL
Paratrechina sp. Marana, AZ
Paratrechina sp. San Simon, AZ
Paratrechina sp. Bryan, TX
Tapinoma sessile Deer Park, TX
Aphaenogaster iberica Spain DQ074361

84

100

100

77

57

81

100

91
60

53

77

78

86

70
81

100
99

51

52

100

52

1

1

0.99

0.93

0.74

1

1

0.55

1

0.99

1

1

P. longicornis Baytown, TX 1
P. longicornis Pasadena, TX
P. longicornis Baytown, TX 3
P. longicornis Baytown, TX 2
P. longicornis Oracle, AZ
P. longicornis College Station, TX
P. longicornis Pasadena, TX

Paratrechina sp. Madagascar DQ176171

P. longicornis Baton Rouge, LA
P. pubens Brimegin, Anguilla
P. pubens Shoal Bay, Anguilla
P. pubens Bermatt, St. Kitts
P. pubens Parkland, FL
P. sp. nr. pubens Pearland, TX 2
P. sp. nr. pubens Manvel, TX
P. sp. nr. pubens Pasadena, TX
P. sp. nr. pubens Deer Park, TX
P. sp. nr. pubens Jacinto Port, TX
P. sp. nr. pubens Houston, TX
P. sp. nr. pubens Pearland, TX 1
P. pubens Cruban Gorde, St. Croix
Paratrechina sp. Madagascar DQ176178
Paratrechina sp. Madagascar DQ176124
Paratrechina sp. Madagascar DQ176066
Paratrechina sp. Madagascar DQ176052
P. arenivaga Coila, MS
P. faisonensis Winston, MS
P. faisonensis Clinton, LA
P. vividula Lawrence Cty., AL
Paratrechina sp. Marana, AZ
Paratrechina sp. San Simon, AZ
Paratrechina sp. Bryan, TX
Tapinoma sessile Deer Park, TX
Aphaenogaster iberica Spain DQ074361

84

100

100

77

57

81

100

91
60

53

77

78

86

70
81

100
99

51

52

100

52

P. longicornis Baytown, TX 1
P. longicornis Pasadena, TX
P. longicornis Baytown, TX 3
P. longicornis Baytown, TX 2
P. longicornis Oracle, AZ
P. longicornis College Station, TX
P. longicornis Pasadena, TX

Paratrechina sp. Madagascar DQ176171

P. longicornis Baton Rouge, LA
P. pubens Brimegin, Anguilla
P. pubens Shoal Bay, Anguilla
P. pubens Bermatt, St. Kitts
P. pubens Parkland, FL
P. sp. nr. pubens Pearland, TX 2
P. sp. nr. pubens Manvel, TX
P. sp. nr. pubens Pasadena, TX
P. sp. nr. pubens Deer Park, TX
P. sp. nr. pubens Jacinto Port, TX
P. sp. nr. pubens Houston, TX
P. sp. nr. pubens Pearland, TX 1
P. pubens Cruban Gorde, St. Croix
Paratrechina sp. Madagascar DQ176178
Paratrechina sp. Madagascar DQ176124
Paratrechina sp. Madagascar DQ176066
Paratrechina sp. Madagascar DQ176052
P. arenivaga Coila, MS
P. faisonensis Winston, MS
P. faisonensis Clinton, LA
P. vividula Lawrence Cty., AL
Paratrechina sp. Marana, AZ
Paratrechina sp. San Simon, AZ
Paratrechina sp. Bryan, TX
Tapinoma sessile Deer Park, TX
Aphaenogaster iberica Spain DQ074361

84

100

100

77

57

81

100

91
60

53

77

78

86

70
81

100
99

51

52

100

52

1

1

0.99

0.93

0.74

1

1

0.55

1

0.99

1

1

 

Figure 3.3. Single most parsimonious tree during a heuristic search by using PAUP* 

(Swofford 2001). Phylogenetic relationship of P. sp. nr. pubens mtDNA COI to other 

Paratrechina species. Numbers at the tree nodes indicate Bayesian posterior 

probabilities, and numbers above nodes indicate bootstrap values obtained from 1,000 

replicates using MP analysis. 
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Figure 3.4. The scatter plot shows the relationship between geographic distance and 

genetic similarity of P. sp. nr. pubens and P. pubens populations sequenced for this study 

(P = 0.0002, see text). The linear regression line is defined as Kimura 2-Parameter 

genetic distance = 6E – 05 [km] + 0.0067, and accompanied by the corresponding 95% 

confidence interval (red dotted line) and βo (blue dotted line). 

 

clades (Fig. 3.3) with high posterior bootstrap values supporting basal clades of MP. 

Several of the distal clades (scores not shown) were not as highly supported with 

posterior bootstrap values, indicating a lack of support. 

The linear regression analysis of geographical and genetic distance revealed a 

positive correlation (n = 12, R2
 = 0.768, t = 5.76, P = 0.0002) (Fig. 3.4). The distribution 

of sampling locations created a distribution of geographic distance within and between 

populations of P. sp. nr. pubens and P. pubens. Genetic similarity among Texas 

populations of P. sp. nr. pubens ranged from 0.00658 to 0.00989. Genetic similarity from 
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P. sp. nr. pubens among P. pubens ranged from 0.01497 to 0.3354. Genetic similarity 

increased with increasing spatial separation between populations. 

 

Discussion 

The analyses of mtDNA COI of Paratrechina spp. revealed several robust clades 

from the various trees. Within these clades are two or three distinct clades of P. pubens 

and P. sp. nr. pubens, including an clade of P. pubens from Florida. The clade of P. sp. 

nr. pubens and P. pubens from St. Croix may support identification of an undescribed 

species of P. pubens. The analysis also demonstrated misidentification(s) of Paratrechina 

sp(p). samples. The phylogenetic trees supported work from a former Paratrechina 

phylogeny reconstruction (Smith et al. 2005). The analysis of genetic and geographic 

distance supported paleogeographic isolation of the fulva complex and further 

corroborates a possible source of introduction of P. sp. nr. pubens to Texas.  

The curious phylogenetic identification of P. pubens of St. Croix within the P. sp. 

nr. pubens NJ, MP, and Bayesian clades may aid in narrowing the search for geographic 

descent from which P. sp. nr. pubens infestation of Texas arose. This does not necessarily 

identify St. Croix or another Caribbean island as a point-of-origin, as more thorough 

studies must be completed that include a geographically broader collection of P. pubens 

and P. sp. nr. pubens. These types of phylogenetic studies have been conducted prior. 

The origination of invasively destructive alga species, Caulerpa taxifolia, of the 

Mediterranean was identified as an aquarium strain of Australia (Jousson et al. 1998, 

Wiedenmann et al. 2001). Nuclear DNA analysis of microsatelites can identify single or 
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multiple introductions (Rheindt 2003) and may be able to do so for P. sp. nr. pubens and 

could explain colonial affiliation of supposed supercolonies found within geographically 

distinct populations. 

Although no in-depth morphological analyses were conducted (as in Meyers and 

Gold unpublished b), the voucher specimen examination revealed no morphological 

dissimilarity between P. pubens from Florida, Anguilla, St. Kitts, St. Croix, and P. sp. nr. 

pubens from Texas. Given their apparent morphological similarity, the robust clade 

separations resolved in this study suggest that the only way to accurately differentiate 

populations of P. sp. nr. pubens and P. pubens, is through phylogenetic analyses. When 

viewing specimens of P. sp. nr. pubens, two slight morphological differences from P. 

pubens were noted (by J. Trager pers. comm.). It was noted that the macrochetal hairs of 

P. sp. nr. pubens were slightly less curved and males exhibited macrochetal arrangement 

dissimilarity compared to that of P. pubens. This study did not evaluate dentition or 

morphological arrangement of the mandibles. This may reveal unknown characters 

differentiating the taxonomic groups in question. Similar studies have demonstrated 

significant differences in labral morphologies in other morphologically ambiguous insect 

groups (e.g. Reticulitermes (Rhinotermitidae)) (Heinstchel et al. 2006). Unless viewed by 

an expert, these types of characters are unlikely to be consistently and correctly 

identified. 

This study may support the identification of the Texas populations as P. fulva. 

Given the pest status and pestiferous behavior of previous infestations of P. fulva in 

Colombia (Zenner-Polania 1994) and P. pubens in St. Croix (Wetterer unpublished), an 
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additional character may be useful when identifying this species. This study may also 

support the misidentification of P. fulva as pubens from St. Croix. The biological 

potential for numerical density in non-indigenous geographic areas may be an 

unfortunate yet identifying character for this species. 

Clearly there are biological differences between the three clades of P. pubens and 

P. sp. nr. pubens. The P. pubens sister clade of Anguilla and St. Kitts and the taxa from 

Florida were collected from populations without the reported densities found in the 

populations collected from St. Croix and Texas. Another possible differentiating 

character is their biting behavior. Paratrechina pubens has been previously described as 

“non-biting” (Warner and Scheffrahn 2004). Reportedly high densities of P. pubens in 

the Jacksonville Zoo and Gardens, Florida have become more aggressive and have bitten 

zoo personnel and visitors (D. Calibeo-Hayes, graduate student, University of Florida). 

These behaviors have been previously reported in the Texas populations of P. sp. nr. 

pubens (Meyers and Gold unpublished b). Although not collected for this study, given the 

high densities and biting behavior of P. pubens populations at the zoo, the population 

likely constitutes a synonymy with P. sp. nr. pubens from Texas and St. Croix. 

Alternatively, these behaviors may be a product of high densities and within the phenetic 

range of P. pubens and P. sp. nr. pubens. These and the findings discussed above may 

support the identification of a cryptic species. Comprehensive sampling of P. pubens type 

locality populations will absolutely confirm the identity of P. sp. nr. pubens and many 

other populations of Paratrechina species.  
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Significant genetic variability among the P. sp. nr. pubens and P. pubens St. Croix 

clade (Fig. 3.3) may suggest a broad genetic range enabling successful invasions of non-

indigenous geographic areas. This genetic variation within the P. sp. nr. pubens 

populations may support genetic plasticity or multiple introductions from discrete 

populations. This genetic plasticity may also allow for quick adaptations to new 

environments. This genetic variability may also enhance their ability to avoid a genetic 

bottleneck in the exotic geography of Texas. The MP and Bayesian node scores within 

this clade may be in contrast to previous literature that suggests reduced genetic variation 

of a behaviorally similar ant species, Linepithema humile, the Argentine ant (Tsutsui et 

al. 2000). This reduced genetic variation supports the unicolonial behavior of both L. 

humile and P. sp. nr. pubens in exotic geographies. Establishment of social insects in 

non-indigenous areas is a relatively rare event. Thereby, this study may support a rather 

surprising and unlikely scenario of multiple introductions of P. sp. nr. pubens into Texas. 

Aggression studies involving various P. sp. nr. pubens populations and also P. pubens 

may be warranted to resolve this question. 

The surprising variability found among populations of P. sp. nr. pubens of Texas, 

suggests phenotypic plasticity for this group. What influence these physical adaptations 

may direct their behavior or ability to survive in foreign environments remain unknown. 

Social characters can become enhanced in these non-indigenous geographies (Tsutsui et 

al. 2000). This may help explain their adaptive range for successful invasions of these 

new environments. This is in stark contrast to the genetically similar P. longicornis clade 

(Figs. 3.2, 3.3). 
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However, this genetic variability found within this group may also simply be a 

product of the gene region (COI) that was investigated. This genetic dissimilarity could 

suggest multiple introductions of different populations during the initial founding of the 

site of original known infestation (SOOKI). Multiple incipient introductions could create 

a more adaptive capability of a species in an exotic location as has been observed with 

other organisms (e.g. the Formosan subterranean termite, Coptotermes formosanus).  

There must be a minimum viable beachhead population for successful invasions 

to take place (Moller 1996). This population must be large enough to succeed initially in 

often inhospitable environments. This population must also contain a genetically variable 

population that avoids a critical bottleneck. It remains to be seen if P. sp. nr. pubens 

populations will undergo this bottleneck. Based on the observed variability within the 

phylogenetic results (Fig.s 3.1, 3.2) this may be unlikely in the near future. During an 

invasive event a period of adaptation may occur, during which genetic change could be a 

result (Tsutsui et al. 2000, Williamson 1989). When regarding social insects, these 

genetic changes can result in a cessation of intraspecific variation creating large 

unicolonial populations (e.g. Argentine ants (Tsutsui et al. 2000)). 

Paratrechina pubens from Florida represents a clade within the NJ, MP and 

Bayesian reconstructions. This is indicated by the relatively low bootstrap values 

observed in both the MP and Bayesian phylogenetic trees. More populations must be 

collected and examined before any conclusions are made regarding its evolutionary 

relationship between other near P. pubens populations (Texas and Virgin Islands).  
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This study supports the conclusion of two morphospecies collected during a 

previous study, including populations of Paratrechina species in Antsirañana, 

Madagascar (Smith et al. 2005). Paratrechina sp. DQ176171 inclusion in the P. 

longicornis clade, clearly supports its identification as P. longicornis. Paratrechina 

species DQ176052, 176066, 176124, while 176178 likely comprise a distinct clade of an 

unknown species. 

Paratrechina sp. collected from San Simon, Arizona further represents the 

propensity for Paratrechina species to be transported to nonindigenous areas. The sample 

was collected during a routine check of a commercial truck hauling household goods. The 

load was likely being shipped to California from the eastern U.S. and discovered mid-

shipment as part of routine inspections for quarantinable pests (C. Baptista, pers. comm.). 

Examination of the voucher specimens of the P. vividula, P. faisonensis, and P. 

arenivaga samples, using the Paratrechina key (Trager 1984a). revealed P. faisonensis 

from Louisiana as a possible misidentification. This indicates the clade of P. faisonensis 

from Louisiana, P. sp. San Simon, Arizona, P. vividula Lawrence County, Alabama, P. 

sp. Marana, Louisiana, and P. sp. Bryan, TX likely constitutes identification as P. 

vividula. The P. faisonensis Winston, Mississippi and P. arenivaga Coila, Mississippi 

clade remain unidentified, as the examined voucher samples were not differentiated after 

examination. Logical deduction concludes a misidentification of at least one of these 

samples. These possible misidentifications and unknown species underscore the 

difficulties of the taxonomy of the genus. It also indicates the need for further research of 

the taxonomy of this prolifically invasive group. 
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A positive correlation was found between geographical and genetic distance 

(Kimura 2-Parameter) when plotted using linear regression analysis (Fig. 3.4). As 

geographical distance increased, there was a subsequent increase of genetic distance 

between populations of P. pubens and P. sp. nr. pubens. These findings offer further 

support of the separation of the clades. This also supports allopatry between populations 

of the complex Fulva. Similar allopatric results were found when analyzing genetic and 

geographical distances of Pogonomyrmex badius populations in Florida (Strehl and 

Gadau 2004). This genetic distance caused by geographic distance may be exaggerated 

when regarding island and continental populations.  

These genetic differences may reflect past paleogeographic isolation. Similar 

studies have demonstrated the clear relationship of genetic and geographic distance 

(Strehel and Gadau 2004). However, one would expect these genetic distances can be 

subverted due to unnatural anthropogenic introductions. This may give reason for the 

genetic similarity of P. pubens from St. Croix to P. sp. nr. pubens and its dissimilarity 

from P. pubens. These differences may also be explained by an exponential increase in 

genetic variability in populations separated by >100 km (Strehel and Gadau 2004). 

This study is the first significant endeavor describing the phylogeny of several 

Paratrechina species. The study found misidentifications of Paratrechina samples. The 

conclusions also may reflect paleogeographic events within the complex Fulva. This 

procedure has offered further proof a cryptic species causing deleterious ecological and 

economical effects to Texas and St. Croix. 
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CHAPTER IV 

 

DISTRIBUTION AND SPREAD OF AN EXOTIC ANT,  

Paratrechina SP. NR. pubens, IN TEXAS 

 

Introduction 

 Exotic insects can have immense deleterious effects ecologically and 

economically. A great number of these successful introductions are from social insects 

such as ants, wasps and bees (Moller 1996, McGlynn 1999). Paratrechina species exhibit 

a great propensity of successful invasions (Wilson and Taylor 1967, Trager 1984, 

Zenner-Polania 1990, Passera 1994, Fellowes 1999, Wetterer et al. 1999, Freitag et al. 

2000, Wetterer 2007, Wetterer unpublished data). Some of these invasive events of 

Paratrechina species can also cause great economic and ecological damage (Zenner-

Polania 1990, Zenner-Polania 1994, Wetterer 1999, Wetterer 2007, Wetterer unpublished 

data). Paratrechina species can be among the most difficult urban pests to control 

(Hedges 1998). During the infestations of non-indigenous geographies localized 

populations of these ants can exhibit immense density (Zenner-Polania 1990, Wetterer 

2007) creating increased control difficulties. The Formosan subterranean termite, 

Coptotermes formosanus, exhibits relatively moderate colony size in their native 

environment, however, when introduced to new geographies (e.g. U.S.), colony size 

drastically increases. This dramatic biological change has created one of the most severe 

arthropod pests in the U.S. 

 



 45

In 2002, the Center for Urban and Structural Entomology was notified of a pest 

ant found in an industrial area of Pasadena, TX. By 2003, P. sp. nr. pubens infestation 

was found in overwhelming numbers. It is chiefly a nuisance pest, however, has been 

known to short-circuit electric apparatuses, causing considerable financial cost to 

residents and businesses alike. Amazing densities of P. sp. nr. pubens have been found in 

the infested areas and preliminary field observations indicate a displacement of the 

normally populous red imported fire ant, Solenopsis invicta. Because of these facts, it is 

very likely that deleterious ecological effects will occur. There may be other unknown 

problems associated with this ant species as many risks of invasive species go un-

assessed (Simberloff et al. 2005).  

 Predictive models are an important aspect of invasional biology. Prediction of 

potentially invasive species can lead to prevention. Geographical estimations of exotic 

species incursions can assist researchers and governmental personnel to make decisions 

regarding research and funding opportunities. Many invasions, especially exotic ants, can 

encompass large geographical areas (Vinson 1986, Vander Meer et al. 1990) and as such 

create substantial ecological (Ramakrishnan and Vitousek 1989) and economic (Williams 

1994) impact of affected areas.  

 Extensive biological knowledge of potential or recurring invasive species is 

needed for bioinvasion prevention. This may not be a reliable mechanism for prevention. 

This method requires considerable biological knowledge of a great many potentially 

invasive species, many of which may not have even been described by scientists. 
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However, this study stands as a foundation of that biological knowledge for one of the 

identified species, P. sp. nr. pubens. 

It is imperative to follow the expansion of P. sp. nr. pubens, an already 

ecologically and economically destructive invasive species. Predicting the geographic 

spread of P. sp. nr. pubens will assist in the ecological and economic estimations 

effecting the region. This study followed the distribution and spread of P. sp. nr. pubens 

for three years in South Texas. 

 

Materials and Methods 

Distribution and spread analyses were chosen for two discrete infestation sites. 

The first site, in Pasadena, TX (Fig. 4.1a), was chosen because it was the site of original 

known infestation (SOOKI) of Paratrechina sp. nr. pubens discovered in 2002. This site 

is located ~eight km south of the Port of Houston in an industrial zone of Pasadena. 

Within and surrounding the site were various industrial businesses including biodiesel 

and a variety of chemical plants amongst scattered fields of grasses or woods. Interlacing 

the area were train tracks and roads leading to the industrial plants. The second site, in 

Deer Park, TX (Fig. 4.1d), was chosen because it was the first neighborhood infested 

with P. sp. nr. pubens and was discovered in 2005. This site is located ~five km 

northwest of the Pasadena site and ~two km south of the Port of Houston. The 

neighborhood contained ~200 houses and was isolated from other such neighborhoods by 

≥ 0.4 km on all sides. Distributions for Pasadena and Deer Park were established in 2005 

and 2006, respectively, and subsequent spread of infested areas was observed until 2007. 
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An expansion estimation of P. sp. nr. pubens was conducted from 2005-2007 in 

Pasadena and 2006-2007 in Deer Park, TX. These distribution estimations were focused 

on estimating the rate of spread in two areas where monitoring was hindered by business 

security and private land. Baited pitfall or above ground area monitor traps (baited area 

monitor trap (BAMT)) were installed for the study. Baited pitfall traps consisted of a 1 l 

plastic container including a six by eight cm area monitor (New South Products, 

Greenville, MS), a hot dog piece, and a 20% honey-water soaked cotton ball. The above 

ground traps consisted of an area monitor attached to the ground using grade stakes and 

baited with the same food resource attractants as described above. Above ground BAMTs 

were used in opposition to the pitfall traps due to time constriction and preliminary 

results suggesting equal formicid attraction. A total of 72 pitfall traps were placed out 

within and surrounding the Pasadena site during the spring and summer of 2005. During 

2006 and 2007, 70 and 75, respectively, above ground BAMTs, were placed at ground 

surface. BAMTs were located within and surrounding a targeted zone based on the 

previous findings of 2005 and 2006.  

As expansion of P. sp. nr. pubens distribution increased, subsequent problems 

such as electrical shortages increased. According to anecdotal stories from management, 

these shortages encouraged businesses to bypass security and increased their willingness 

to take part in the distribution study. 

As the distribution of P. sp. nr. pubens in Pasadena and Deer Park began to 

expand outside the range of business security and private property, respectively, it 

became prudent to use transects where possible. Collections for distribution description 
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of 2007 were made using a baited grid sampling system. Distribution estimation of 2007 

Pasadena site involved 100 m transects placed within each of 25 plots (0.84 x 0.84 km) 

within a 4.2 x 4.2 km area (Fig. 4.1c). This area was selected based on previous 

knowledge of distribution and subsequent expansion rates in 2005 and 2006. Quadrants 

7-9, 12-14, and 17-19 were considered infested based on the previous studies and field 

visual identification of P. sp. nr. pubens supplanted baited transects. Distribution 

estimation of 2007 Deer Park site involved 100 m transects placed within each of 25 plots 

(0.25 x 0.25 km) within a 0.75 x 1.25 km area (Fig. 4.1e). This area was selected based 

on previous knowledge of distribution of 2006. Quadrants 5, 8, and 11 were considered 

infested based on the previous studies and field visual identification of P. sp. nr. pubens 

supplanted baited transects. Each directional transect contained five BAMT placed, 

where possible, along a randomly selected direction (East-to-West or North-to-South). 

Some of the areas were inaccessible due to business security or construction (Fig. 4.1c, 

e). 

A broader distribution analysis was conducted that considered only the 

identification of incipient, discrete populations of P. sp. nr. pubens throughout Texas. 

This distribution was also supplemented with a targeted analysis that included mailed 

sample vials alerting pest control operators of the new ant species. These pest control 

operators were located within the surrounding southwest Houston area during 2006. Also, 

during statewide entomology Extension and urban pest control conferences, Extension 

agents and pest control operators were notified of the study. These agents and controllers 
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became an integral part of this study by mailing suspected samples and subsequent 

identification was conducted by JMM. 

Identification of ant species was completed using formicid taxonomic keys 

(Creighton 1950). Identification to species was often difficult due to the collection 

method utilizing glue area monitor traps.  

 

Results 

 During the distribution studies in Pasadena and Deer Park, 12 ant species were 

collected (Table 4.1). The number of species collected at either site within a year ranged 

from 3-8. The number of species collected in the neighborhood was less (n = 7) than the 

number collected in the industrial area (n = 10). Only 1 out of 294 (0.3%) of the BAMTs 

resulted in a collection of zero ant species. A majority (93.6%) of the ant species 

collected were Solenopsis invicta or Paratrechina sp. nr. pubens. Numerous BAMTs (n = 

36, 12.2%) collected multiple ant species. 

2005 Pasadena, TX. P. sp. nr. pubens were collected a mean distance of 0.78 km from 

SOOKI. An analysis of six different locations along the estimated distribution line (Fig. 

4.1a) revealed a mean distance of 1.08 km from site of original known infestation 

(SOOKI). The mean estimated distance of expansion for P. sp. nr. pubens in Pasadena 

from 2002-2005 was 360 m per year (30 m per mo). A more precise estimation of the 

eastern portion of the distribution of 2005 Pasadena site (Fig. 4.1a) was hindered by 



 

 

Table 4.1. Yearly collection percentages of formicid species during Paratrechina sp. nr. pubens distribution estimations from 

2005-2007 in Pasadena and Deer Park, TX. 

 Yearly collection percentages of formicid species (total BAMTs) 
 Pasadena Deer Park  

Species 2005 (72) 2006 (70) 2007 (75) 2006 (22) 2007 (55) Total (294) 
Solenopsis invicta 58.3 (42) 40.0 (28) 92.0 (69) 54.5 (12) 45.4 (25) 59.9 (176) 
P. sp. nr. pubens 37.5 (27) 57.1 (40) 6.7 (5) 45.4 (10) 61.8 (34) 39.5 (116) 
Monomorium minimum 5.6 (4) 10.0 (7) 2.7 (2) 18.2 (4) - 5.8  (17) 
Crematogaster sp. 6.9 (5) - - 4.5 (1) - 2.0 (6) 
Camponotus sp. 2.8 (2) 1.4 (1) 2.7 (2) - - 1.7 (5) 
Cyphomyrmex rimosus 2.8 (2) 1.4 (1) 1.3 (1) - - 1.3 (4) 
Brachymyrmex depilis - 2.9 (2) 1.3 (1) - - 1.0 (3) 
Dorymyrmex sp. - - - - 5.4 (3) 1.0 (3) 
P. longicornis - 4.3 (3) - - - 1.0 (3) 
Pheidole sp. 1.4 (1) 1.4 (1) 1.3 (1) - - 1.0 (3) 
Tapinoma sessile 1.4 (1) - - 9.1 (2) - 1.0 (3) 
Aphaenogaster texana - - - 4.5 (1) - 0.3 (1) 
None 1.4 (1) - - - - 0.3 (1) 
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Figure 4.1 a-f. Distribution maps of P. sp. nr. pubens and various ant species collected 

in Pasadena and Deer Park, Texas. (a) 2005 Pasadena distribution, (b) 2006 Pasadena 

distribution, (c) 2007 Pasadena distribution, (d) 2006 Deer Park distribution, (e) 2007 

Deer Park distribution, (f) ant species key for a-e. The gold line represents the estimated 

distribution of P. sp. nr. pubens based on BAMT data and visual inspections. The blue 

line represents areas of construction or inaccessible land. The star represents the site of 

original known infestation. The northern portion of the line (a) represents an estimate 

based on employee observations and complaints from two industrial complexes. The 

author was not allowed to collect on either of these properties. 
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Figure 4.1. a-f. Continued.
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Figure 4.1. a-f. Continued.
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Figure 4.1. a-f. Continued.
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Figure 4.1. a-f. Continued.
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Figure 4.1. a-f. Continued.
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Figure 4.2. The overall distribution of P. sp. nr. pubens discrete populations in Texas. 

The closed circle represents the site of original known infestation of 2002. The open 

circle represents the second known infestation of 2005. Closed triangles represent 

infestations of 2006. Open triangles represent infestations of 2007. The open square 

represents an infestation of 2008. 
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business security. The low estimated expansion rate of 2006 may reflect this bias. As 

such, the most distal discovery along the eastern portion of P. sp. nr. pubens infestation 

was used when assessing the mean distance spread. 

2006 Pasadena, TX. P. sp. nr. pubens were collected a mean distance of 1.13 (SE 

± 0.72) km from SOOKI. An analysis of seven locations along the estimated distribution 

line (Fig. 4.1b) revealed a mean distance of 1.46 (SE ± 0.19) km from SOOKI. The 

mean estimated distance of expansion for P. sp. nr. pubens in Pasadena from 2002-2006 

was 364 m per year (30 m per mo). Access to a portion of the southern distribution was 

limited by construction (Fig. 4.1b). 

2007 Pasadena, TX. The mean distance of new P. sp. nr. pubens infestations in 

the 2007 Pasadena site within quadrants 3 and 3a and was 1.66 km (SE ± 0.21) (Fig. 

4.1c) from SOOKI. An analysis of six locations along the estimated distribution line 

(Fig. 4.1c) revealed a mean distance of 1.67 (SE ± 0.26) km from SOOKI. The mean 

estimated distance of expansion for P. sp. nr. pubens in Pasadena from 2002-2006 was 

334 m per year (28 m per mo). 

2006 Deer Park, TX. P. sp. nr. pubens were collected a mean distance of 0.28 

(SE ± 0.04) km from SOOKI. An analysis of five locations along the estimated 

distribution line (Fig. 4.1d) revealed a mean distance of 0.38 (SE ± 0.07) km from 

SOOKI. The mean estimated distance of expansion for P. sp. nr. pubens in Pasadena 

from 2002-2006 was 280 m per year (24 m per mo).   

2007 Deer Park, TX. P. sp. nr. pubens were collected a mean distance of 0.38 

(SE ± 0.55) km from SOOKI. An analysis of six locations along the estimated 
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distribution line (Fig. 4.1e) revealed a mean distance of 0.46 (SE ± 0.69) km from 

SOOKI. The mean estimated distance of expansion for P. sp. nr. pubens in Pasadena 

from 2002-2006 was 229 m per year (19 m per mo).  

Discrete populations in Texas. P. sp. nr. pubens were collected or identified from 

2005 to 2008 from 25 new, discrete populations at a mean distance of 29.24 km (SE ± 

5.46) from SOOKI (Fig. 4.2). 

 

Discussion 

 Field observations and distribution studies of Pasadena and Deer Park, TX using 

BAMTs suggested a definite homogenization of ant species within the more established 

areas infested by Paratrechina sp. nr. pubens. This distinct majority of ants collected 

were Solenopsis invicta and P. sp. nr. pubens. The collection of these two species 

supports their ability to aggressively find and allocate food resources quickly. This also 

suggests their dominance within the local ecosystems of the Pasadena and Deer Park 

sites. This dominance is certainly creating a decrease in ant diversity within these 

established environments. The greater diversity of ant species and expansion rate of P. 

sp. nr. pubens found in the industrial area of Pasadena may be a result of a variety of 

factors. The industrial area is not a conducive environment for ant activity due to the 

increased concrete and lack of moisture and humidity availability. The within and 

surrounding areas of the industrial area include wooded and grassed environments that 

may have greatly increased the density and expansive rate of P. sp. nr. pubens. The 
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general use of insecticides by homeowners in the neighborhood may decrease the 

density and resulting expansive capabilities of P. sp. nr. pubens. 

 More precise P. sp. nr. pubens distribution estimations were limited because of 

construction, business security, and physical inaccessibility. Construction during 2006-

07 likely hindered the 2007 advancement of P. sp. nr. pubens in quadrants 11, 16, 21, 

and 22. The construction may have caused the decrease in expansion rate found in the 

Pasadena site in 2007. As such, the Eastern portion of the distribution line, in part, 

reflects field observation estimation (Fig. 4.1c). Heavy equipment and construction 

precluded a more thorough distribution study of Pasadena during 2006 and 2007 (Fig. 

4.1b, c). Most of these areas were denuded and as such, death of formicid colonies or 

drastic population reductions likely occurred. Some quadrants (5 and 20) included areas 

of both construction and security concerns of the businesses and were, in turn, precluded 

from the 2007 Pasadena study (Fig. 4.1c). Based on the conclusions of this study, these 

quadrants would not have likely yielded any distribution information regarding P. sp. nr. 

pubens.  

The transects of 2007 using 0.84 km2 quadrants did not offer as precise an 

estimation as warranted for this particular study. This lack of precise estimation does not 

allow for well defined expansion estimation for P. sp. nr. pubens at this stage of 

distribution. Because P. sp. nr. pubens was found in grid ‘3’, this procedure did allow for 

the discovery of an infested area beyond the estimated distribution. The quadrant system 

did allow for quick response outside of the infested area (grid ‘3a’) (Fig. 4.1c) due to the 

physical limitations of a pre-determined quadrant size. Quadrants 19, 14, 13, 8, 3 and 3a 
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all include a waterway associated with nearby Taylor Lake of Taylor Lake Village, TX. 

This unexpected expansion discovery may indicate that proximity to a water source or 

underground water availability allows P. sp. nr. pubens to spread at a quicker rate than 

other areas not endowed with this factor. This may also indicate the disparity between 

landscape types (riparian vs. industrial) and difficult expansion by P. sp. nr. pubens 

when associated with industrial areas. 

The estimated expansion is much lower in Pasadena, TX than previous 

estimations of a study on closely related, exotic P. fulva in Colombia (100 m per mo) 

(Zenner-Polania 1990). This lower expansion rate may be caused by two factors. 

Business security and construction hindered access to likely infested areas, decreasing 

the precision of the estimations of spread. The industrial environment may prevent ideal 

conditions for expansion. Much of the area consists of concrete, inappropriate structures, 

and inadequate food and water resources that may hinder conducive factors needed for 

ideal P. sp. nr. pubens density and spread. When P. sp. nr. pubens reaches non-urban 

areas the expansive rate will likely greatly increase. Other similar behaving invasive ant 

species have spread at 62.5 m per mo (the Argentine ant, Linepithema humile) 

(Krushelnycky et al. 2004) and 15 m per mo (the yellow crazy ant, Anoplolepis 

gracilipes) (Abbott 2006). 

Field observation suggested a clear homogenization of ant fauna in and around 

the Deer Park site. This clear decrease in ant species diversity at the Deer Park site was 

demonstrated with the reduction in species from six to three in 2006 to 2007, although it 

was not observed from collections at the Pasadena site (eight to seven), (Table 4.1).  
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In Deer Park 2007, east of quadrants 3 and 6 was inaccessible for the distribution 

study (Fig. 4.1e). Construction south of the grid prevented further distribution 

estimation; however, visual field observations suggested a finite range of P. sp. nr. 

pubens had been found at the southern periphery of quadrants 14 and 15.  

Due to successful invasive events, a disproportionate amount of negatively (70%) 

and positively (10%) affected bee, wasp, and ant species could be estimated (McKinney 

and Lockwood 1999). Other examples have demonstrated a restructuring of invasion-

receiving communities (Howarth 1985, Thomas et al. 1989, Wojcik 1994). Despite 

concerns regarding introduced species, 79.4% do not have any effect on the indigenous 

community (Simberloff 1981), while only 8.3% caused extinction events. And of those, 

extinction driving occurrences, 77.5% are caused in island species. These extinction 

events may not be the case despite seemingly overwhelming numbers of P. sp. nr. 

pubens. Field observations suggest the distinct possibility that other formicid species 

subsist in smaller numbers than prior to the P. sp. nr. pubens introduction. 

The collection percentages (Table 4.1) are necessarily biased as the focus of the 

study was to find P. sp. nr. pubens distributions. I devoted 90% effort for discovery in 

likely areas of infestation and 10% effort for discovery in unlikely areas, thus optimizing 

time and resources to achieve the search goals (R. Gold, professor Urban Entomology, 

Texas A&M University, pers. comm., 2008). Additionally, when an aggressive and 

dominant ant species is present in a community, the use of a variety of food resources 

can facilitate a more accurate assessment of the ant fauna (Sarty et al. 2007). The use of 

only two food resources may have limited the conclusions of this study. 
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The conclusions of this study may also be biased because of the ability of P. sp. 

nr. pubens to find and allocate resources more quickly than other ant species (Wilson 

and Hölldobler 1990). This may further hamper the ability of other ant species to search 

for resources in the immediate area when in the presence of uncommon interspecific 

formicid densities. Other species may be currently surviving in more established areas, 

however, in very low numbers. The high densities of P. sp. nr. pubens may simply cause 

other ant species to become less active and not necessarily displaced or locally extinct. 

Normal ranges of activity would logically occur within normal ranges of interspecific 

formicid activity. It may be that other formicid species exist even in the well established 

areas of P. sp. nr. pubens distributions. Some native ant species may have become 

displaced or undergone temporary microgeographic extinction and/or extreme isolation. 

Although not collected in well established areas, other formicid species may be unable to 

find and allocate a resource as quickly or readily as P. sp. nr. pubens. These factors may 

all lead to under estimates of populations of other ant species. Once a food resource (e.g. 

pitfall trap bait) has been located, the quick allocation of workers may overwhelm the 

proximal area surrounding the resource.  

The displacement of the red imported fire ant (RIFA), Solenopsis invicta, by P. 

sp. nr. pubens is a concern when regarding the dichotomy with which S. invicta and P. 

sp. nr. pubens can be controlled. Paratrechina sp. has been found coexisting in the 

presence of S. invicta (Sanchez 2005). Paratrechina species are considered predacious 

on RIFA, preying upon newly mated queens (Whitcomb et al. 1973, Stimac and Alves 

1994) and also coexisting with RIFA in other habitats (Porter and Savignano 1990). The 
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displacement of S. invicta implicates the strength of ecological influence that P. sp. nr. 

pubens is creating in south Texas. This notable influence on a previously ecologically 

dominant species in the region, S. invicta, may signify the possible effects P. sp. nr. 

pubens may be having on less influential fauna of the local ecosystem. 

Paratrechina sp. nr. pubens has invaded numerous locations in Texas that 

comprise geographically discrete populations (Fig. 2). These locations include industrial 

areas, schools, neighborhoods, landfills and areas with amplified environmental, 

ecological, and human concerns. One currently substantiated location is the National 

Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) in Houston, 

TX. This infestation was discovered in March of 2008. This infestation is a concern for 

two reasons. P. sp. nr. pubens propensity for electrical shortages is alarming when 

considering such a large facility with direct scientific and human implications. Because 

of the unknown ecological effects from P. sp. nr. pubens, endangered species become a 

concern. Found only on the prairie coastal areas, the endangered, ground-nesting 

Attwater’s prairie chicken, Tympanuchus cupido attwateri, has particular habitat 

requirements (TPWD, 2007). One of the few locations being utilized for raising the bird 

is the grounds of NASA JSC. Numerous reports of S. invicta predating on ground 

nesting birds have been published (Drees 1994, Allen et al. 1995, Lockley 1995, Wojcik 

2001). Therefore it is a concern when another ecologically dominant ant species is 

encroaching the habitat of T. c. attwateri on NASA property. 

Other potential locations of concern not yet realized by advancement of the P. sp. 

nr. pubens populations include Hobby Airport and the Armand Bayou Nature Center. An 
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infestation of P. sp. nr. pubens at a Houston middle school is located less than 1.3 km 

from Hobby Airport. The SOOKI for P. sp. nr. pubens population expansion has spread 

to within 0.5 km from the Armand Bayou Nature Center. P. sp. nr. pubens may inhibit 

the endemic fauna and disrupt the natural ecology. 

Whatever the means; the invasive pathway niche (IPN) exploited by various 

species has resulted in numerous successful exploitations of the bioinvasive process 

(Simberloff et al. 2005). Paratrechina sp. nr. pubens is currently exploiting several IPNs 

(e.g. commercial trucking, vehicles, train, potted plants, garbage, landfill, or 

construction). The broad distribution expansion of P. sp. nr. pubens may have been 

assisted by the transportation opportunities afforded in an industrial area. During several 

field studies on P. sp. nr. pubens, anecdotal stories from numerous individuals suggest 

periodic infestation of colonies into motor vehicles, boats and other similar equipment. 

These events typically occurred during or proceeding rain events. As such, the Pasadena 

site likely acted as a point-of-origin for further anthropogenic introductions into and 

surrounding Harris county. During the dispersal events, minimum viable population size 

does not seem to be a limiting factor for P. sp. nr. pubens. Preliminary laboratory 

examinations have shown that P. sp. nr. pubens can still have living caste members, 

including queens, after six wk of starvation and four wk without water. In whatever 

capacity, P. sp. nr. pubens may be spread, with the exclusion of landfills, field 

observations suggest they are likely being spread as a small event with a single satellite 

colony.  
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Although beyond the scope of the current study, future metapopulation analyses 

should be conducted for predictive estimations of additional geographic infestations and 

ecological diversity effects from P. sp. nr. pubens. Metapopulation analyses can lead to 

identification of influential environmental factors that increase the likelihood for ant 

diversity (Morrison 1998). Knowledge of island biogeography (MacArthur and Wilson 

1963, 1967) may enhance the potential for learning about invasive events and the 

potential adverse effects from an ecologically dominant species. Although intended for 

island population dynamics, converse lessons may be learned from island biogeography 

regarding continental invasions, such as P. sp. nr. pubens to Texas. Artificial landscapes 

created by urban environments (Davis and Glick 1978, Niemelä 1999, Yamaguchi 2005) 

may closely ally with island biogeography. Spatial or metapopulation modeling of this 

infestation could be infused into LANDIS (landscape dynamics program), RAMAS 

(metapopulation modeling program) (Akçakaya 2001), or other environmental spatial 

modelers, to better estimate spread of P. sp. nr. pubens in an urban landscape that 

includes patchy or fragmented habitats, respectively. Certain caveats of metapopulation 

analysis may be elucidated indicating reasoning for such low isolation among 

populations of P. sp. nr. pubens. Flow or movement of P. sp. nr. pubens may be 

enhanced or restricted from one quadrant to another by suitable or unsuitable habitats. 

More precise information may be gained by a predictive probability model that may 

include information gained from this study. 

In the same regards, predicting the impacts on native ecosystems could become 

useful. Invasive prediction models (Byers et al. 2002) and quantitative predictive impact 
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models (Ricciardi 2003) may be used to forecast ecological effects of P. sp. nr. pubens, 

utilizing the information gained from this study. The dynamic invasion geographies of P. 

sp. nr. pubens populations are key to predictive estimations for spatial scales (Ricciardi 

2003). Although held in suspicion of success (Gilpin 1990), prediction models for 

invasive species, such as P. sp. nr. pubens, will likely need a great deal of biological 

data. These prediction models do not necessarily need to predict individual events, but 

the effects such events may have on the native ecology. This study may be able to offer 

baseline data for a predictive model for P. sp. nr. pubens. RAMAS can offer accurate 

estimations of extinction probabilities of native fauna (Akçakaya 2001) in the P. sp. nr. 

pubens effected areas. This ecological risk assessment (Akçakaya 2001) is an important 

aspect when determining the impact of this and other invasive species.   

Given the establishment and synanthropic behavior of P. sp. nr. pubens, 

continued introductions are unavoidable without local, state and/or federal expansion-

preventing measures in place. Should this ant spread to further locations outside of the 

Houston area or Texas, it may become a regionally exotic species with remarkable 

deleterious consequences.
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CHAPTER V 

 

LABORATORY EVALUATION OF DINOTEFURAN IN  

LIQUID ANT BAIT AGAINST Paratrechina SP. NR. pubens 

 

Introduction 

Neonicotinoids comprise a class of insecticide that is very effective against a 

great variety of insects. Neonicotinoids demonstrate agonistic activity on arthropod 

postsynaptic nicotinic acetylcholine receptor sites (Tomizawa and Yamamoto 1993, 

Miyagi et al. 2006). Dinotefuran, N-methyl-N’nitro[N”-[(tetrahydro-3-

furanyl)methyl]guanidine, has insecticidal activity that includes both neuron-excitatory 

and neuron-blocking mechanisms (Kiriyama and Nishimura 2002). Dinotefuran is a 3rd 

generation neonicotinoid with broad spectrum activity against insects (Wakita et al. 

2003). Typically known as and used in agricultural products (Elbert et al. 1998), 

neonicotinoids usefulness has been further expanded to the control of urban insect pests 

(e.g. Premise®, Maxforce® Granular Fly Bait, and Advantage® (imidacloprid) for control 

of termites, flies, and fleas and ticks, respectively). Dinotefuran insecticidal activity has 

previously been demonstrated across a few insect groups including houseflies, Musca 

domestica (Kiriyama et al. 2003), mosquitoes (Corbel et al. 2004) and cockroaches 

(Mori et al. 2001, Kiriyama and Nishimura 2002, Miyagi et al. 2006). Regarding human 

safety, neonicotinoids have proven to have a low toxicity to mammals (Kiriyama and 

Nishimura 2002, Corbel et al. 2004). 
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There is currently no published research concerning dinotefuran efficacy against 

ants. A recent introduction of a very troublesome invasive ant, Paratrechina sp. nr. 

pubens has warranted research involving control of this pest. This invasive species has 

caused numerous electrical shortages and become an immense nuisance due to their 

densities. Since its introduction, this tramp ant has spread to 25 geographically distinct 

locations in five Texas counties. Typical control tactics for urban ant pest population 

management have been inadequate due to remarkable population densities of P. sp. nr. 

pubens. Novel control measures should be evaluated as to their efficacy towards 

population management of P. sp. nr. pubens. Successful novel control research tactics 

will likely be integrated into an overall management program for P. sp. nr. pubens 

control or eradication. 

Invasive social insects can create ecologically devastating results (Moller 1996, 

Chapman and Bourke 2001, Holway et al. 2002). Social behaviors of ants create a 

weakness that can be exploited during the control process. Shared resources, 

trophallaxis, cannibalism, and grooming are all avenues for an increase in treatment 

efficacy. This is particularly evidenced by the horizontal transmission of active 

ingredients (AI’s), as has been observed in cockroaches (Kopanic and Schal 1999), 

termites (Ibrahim et al. 2003) and other ants (Soeprono and Rust 2004). Invasions by 

social insects often encompass large geographical regions, are detrimental to agricultural 

systems and natural communities, and are expensive to control (Vinson 1986, Vander 

Meer et al. 1990, Williams 1994). The ease of application of aerially applied control 

measures is a desirable character for a management program for invasive species. Baits 
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could be integrated into an overall management program. These programs have been 

historically evaluated (e.g. Mirex against the red imported fire ant, Solenopsis invicta 

(Banks et al. 1973)) and more recently for termites as “Operation Full Stop” for the 

Formosan subterranean termite, Coptotermes formosanus, in New Orleans, Louisiana 

(Ring et al. 2001).  

The use of baits for eradication of ants has been reviewed (Stanley 2004). The 

use of baits has proven successful against other invasive species behaviorally similar to 

P. sp. nr. pubens. Unicolonial ants, such as the Argentine ant, Linepithema humile 

(Krushelnycky et al. 2004) and the yellow crazy ant, Anoplolepis gracilipes (Abbott and 

Green 2007), have been successfully controlled despite high densities. Containment of 

an early detected invasive species may afford time for research to conclude successful 

management or eradication techniques (Krushelnycky et al. 2004).  

The objective for this study was to determine mortality ratios of P. sp. nr. pubens 

at various concentrations of dinotefuran amended into a liquid bait. This study 

constitutes an initial effort to find control alternatives for P. sp. nr. pubens in Texas. 
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Materials and Methods 

Each of thirty plastic boxes, 9 cm high x 15 x 30, coated with fluon, contained 

100 Paratrechina sp. nr. pubens workers collected from Pasadena, TX (29˚ 36.748 N, 

95˚ 03.313 W). Workers were collected from laboratory maintained queenright colonies 

of moderate size containing brood. Glass tubes, 1.6 cm d x 15 cm were placed in each 

box, containing deionized water with a cotton plug. Tubes were covered with solid color 

construction paper for darkening purposes. Five replications at each of five 

concentrations of dinotefuran at 0.00006, 0.00012, 0.00025, 0.0005 and 0.001% were 

used, along with five replications of the product with no AI (blank). Concentrations were 

selected based on the suggestions given by the manufacturer. The insecticide was 

provided in aqueous solution at 0.001%. All dilutions were made using 20% sucrose in 

deionized water. Ants were starved for 24 h prior to exposure. Two ml droplets of 

dinotefuran or blank were placed on the bottom of each box. Observations were made at 

1, 2, 3, 4, 5, 24, 48, 72, and 168 h after application, and moribund ants were counted. 

The number of live ants was counted as opposed to the number of dead, as it soon 

became apparent that the ants were cannibalistic.   

Counts of dead or live ants were made after the 24 h starvation period and 

statistical analysis was conducted accordingly. For statistical purposes, an outlier 

replication within the 0.001% dose was excluded.   

One-way Analysis of Variance (ANOVA) was used to determine significant 

difference in mean percent mortality in treatments. Means were separated using Tukey-
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Kramer HSD test. LD50 and LD90 values of mortality response to treatments were 

analyzed using PROC PROBIT (SAS Institute 2000, Cary, North Carolina). 

 

Results 

Mean percent mortality of P. sp. nr. pubens was typically higher as the 

concentration increased at both three (F = 7.28; df = 28; P < 0.001) and seven (F = 7.28; 

df = 28; P < 0.001) d post-treatments (Table 5.1). There were no significant differences 

between the four highest concentrations for both post-treatment observations. Three d 

observations of the lowest concentration (0.00006%) indicated a significantly lower 

efficacy than the highest two concentrations. LD50 and LD90 values at three and seven 

days post treatment (Table 5.2) showed a poor fit to the model (df = 1; χ2 = 7.20; P < 

0.01, df = 1; χ2 = 7.09; P < 0.01, respectively).   

 

Discussion 

Dinotefuran caused more mortality in P. sp. nr. pubens than did controls. With 

the relatively low LD90 values, these data indicate high efficacy of dinotefuran to control 

P. sp. nr. pubens. These data also indicated that dinotefuran caused sufficient mortality 

to warrant further testing in both the laboratory and field; however, the delivery system 

of dinotefuran will need modification for field tests. Including this bait with corn grit or 

other delivery product may decrease evaporation and crystallization rate, along with 

increasing the likelihood that workers will be able to allocate the bait to remaining 

colony members. 

 



 

 

74

Table 5.1.  Mean dinotefuran-treated P. sp. nr. pubens mortality rates with doses using 

five replications of 100 ants per arena. 

Concentration (%) Mean % mortality in five 

replications @ 3datab 

Mean % mortality in five 

replications @ 7datac 

0.001d 78.82 a 89.17 a 

0.0005 63.36 a 82.51 ab 

0.00025 58.61 ab 88.62 a 

0.00012 44.82 abc 87.61 a 

0.00006 16.47 bc 57.15 b 

Blank 3.31 c 4.18 c 

aMeans in the same column followed by the same letter are not significantly different (P 
< 0.05; Tukey-Kramer HSD).  bF = 7.28; df = 28; P < 0.001, cF = 26.57; df = 28; P < 
0.0001 
dFor statistical purposes, this dose had only four replications. 
dat = days after treatment. 



 

Table 5.2. Probit regression of mortality data to dinotefuran-treated P. sp. nr. pubens workers at different time intervals with 

LD values in percent active ingredient. 

# replications DAT Slope ± SE LD50 (95% FL) LD90 (95% FL) χ2 

30 3 0.99 (0.37) 0.0003 (0.00008 – 0.0008) 0.005 (0.001 – 137.75) 7.20

30 7 0.84 (0.32) 1.67 x 10-5 (3.08 x 10-9 – 5.53 x 10-5) 0.00055 (0.00025 – 0.037) 7.09

DAT = Days after treatment.
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High survival ratio within the control replications suggests an unbiased analysis 

of the experiment. However, extraneous factors such as crystallization (Fig. 5.1) of 

dinotefuran and cannibalism may have affected mortality in this no-choice test. 

Crystallization of the bait may not have allowed for continued feeding past ca. 48 h (Fig. 

5.1). Some individuals became adhered to the product and therefore died in situ, which 

may have adversely affected spread of the insecticide throughout the remaining workers. 

Crystallization may alternatively create a differential availability of dinotefuran within 

the formulation. The primary dissipation route for dinotefuran may be through aqueous 

photolysis (~1.3 d). Sorting and separation of the dead individuals from the living group 

of workers would not have allowed for the opportunity of cannibalism. This cannibalistic 

behavior towards exposed individuals of social insects increases the transmission of an 

insecticide throughout the population (Kopanic and Schal 1999, Ibrahim et al. 2003, 

Soeprono and Rust 2004). Given the relative stability of dinotefuran, this is likely the 

case regarding its interaction with P. sp. nr. pubens both physiologically and 

behaviorally. It is unknown whether P. sp. nr. pubens workers were cannibalistic toward 

healthy or moribund workers or simply consume cadavers as part of a normal behavioral 

assemblage. Although no counts were taken of major body parts (head, thorax, or 

abdomen), my observations indicate that consumption of the head was considerably less 

than the thorax or abdomen. Further studies on horizontal transfer of insecticide through 

cadaver maintenance or cannibalism should be investigated in P. sp. nr. pubens. 

Metabolic dissipation pathways of dinotefuran should also be investigated. These 
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findings may indicate the reasoning for high horizontal transmission through behaviors 

(trophollaxis, grooming or other) or cannibalistic insects. 

The relative success of this laboratory study warrants further laboratory 

evaluations and initial field efficacy investigations. These findings may assist pest 

control operators during their efforts to control the numerically superior pest. 

 

 

 

Figure 5.1.  P. sp. nr. pubens workers adhered to a crystallized mass of dinotefuran.
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CHAPTER VI 

 

LABORATORY EFFICACY OF INSECT GROWTH REGULATOR,  

NOVALURON, FOR Paratrechina SP. NR. pubens CONTROL 

 

Introduction 

 Novaluron, 1-[3-cloro-4-(1,1,2-trifluoro-2-trifluoro-methoxyethoxy)phenyl]-3-

(2,6-difluorobenzoyl)urea, an insect growth regulator (IGR), has been used against a 

variety of arthropods (Ishaaya et al. 2003, Su et al. 2003, Cabrera et al. 2005), however, 

this control agent has not been used against any formicid species. Although IGRs have 

adverse affects against other ant species in the laboratory (Banks et al. 1983, Kabashima 

et al. 2007), field control of ants using (IGR) baits can be difficult due to their 

temporally dynamic nutritional needs. Sustainable amounts of an IGR must be 

maintained within the colony brood and available in an effective dose during molt. 

These difficulties are compounded by the inactivity of IGRs on worker and alate castes. 

Colony death occurs when lack of worker replacement and natural death of adult castes 

take place (Banks et al. 1983). 

 An invasive ant species, Paratrechina sp. nr. pubens, has created numerous 

problems in and around the vicinity of Houston, TX since 2002. These problems created 

by P. sp. nr. pubens include status as an immense nuisance, electrical shortages of a 

variety of apparatuses, ecological dominance, and companion animal avoidance of 

outdoors. According to field observations from pest control operators and preliminary 
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laboratory studies, very few bait matrices are attractive to P. sp. nr. pubens. It may 

become imperative to discover attractive and successful bait matrices as part of a 

temporally comprehensive control strategy for the management or eradication of P. sp. 

nr. pubens. 

This study intended to evaluate the biological activity of novaluron against the 

invasive ant, P. sp. nr. pubens. Advance Carpenter Ant Bait (ACAB) with no active 

ingredient (AI) was amended with novaluron. Various concentrations of this synthesized 

material were used to determine novaluron efficacy against P. sp. nr. pubens in the 

laboratory. 

 

Materials and Methods 

 Novaluron was administered at various concentrations to P. sp. nr. pubens in 

granular form using ACAB matrix (0.1, 0.25, 0.5, and 0.0% AI). Paratrechina sp. nr. 

pubens were starved for 24 h pre-treatment. The colonies were allowed to feed on the bait 

for 1 wk, after which the bait container was removed. Throughout the length of the 

experiment, P. sp. nr. pubens were offered 25% honey-water and crickets. Each replicate 

consisted of 100 workers and 50 brood (small egg clusters, larvae, and/or pupae). Two 

colonies were field-caught and laboratory-raised. All replicates were placed in plastic 

boxes, 9 cm high x 15 x 30, coated with fluon and provided glass containers fitted with 

water-wicks (Fig. 6.1). Colonies were exposed to CO2 until movement was such that 

individual workers and brood could easily be counted and removed using a camel-hair paint 

brush. Colonies were placed in clear Petri dishes (3.5 x 1.0 cm) containing dental stone  
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Figure 6.1. This picture demonstrates the provisioning of bait and subsequent fungal 

growth associated with the high humidity and the clustering behavior of P. sp. nr. 

pubens. The discoloring (yellowing) of the wick seen here is typical of all field-collected 

colonies maintained in the laboratory. 
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substrate for observational purposes and moisture retention. The top of each Petri dish, two 

holes were made for worker movement. Post-treatment observations of worker and brood 

numbers, including abnormal behaviors, were made at each time interval. Deviation from 

the original colony numbers were used to determine efficacy of novaluron concentrations. 

Each concentration consisted of 7 replicates. Based on former P. sp. nr. pubens colony 

maintenance, replications for this study were maintained in a growth chamber at ~29.5ºC 

and ~64.5% humidity. All treatments and replicates were Completely Randomized Block 

Design (CRBD) between colonies.  

 Post-treatment counts were conducted by exposing P. sp. nr. pubens to CO2 until 

rapid movements ceased and workers and brood were counted. Workers were observed 

until CO2 recovery. To determine efficacy of novaluron, observations were made 3, 7, 

14, and 28 d post-treatment. Efficacy was determined from the colony reduction of post-

treatment counts from pre-treatment counts. Temperature and humidity data were taken 

every hour throughout the experiment using a HOBO Data Logger (Onset Computer, 

Bourn, MA). 

 One-way Analysis of Variance (ANOVA) was used to determine significant 

difference in mean mortality (workers) and survival (larvae) in treatments (JMP, SAS 

Institute, Cary, North Carolina). Means were separated using Tukey’s HSD test.   
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Results 

 One-Way ANOVA was conducted to observe any bias in replication placement 

within the growth chamber. This analysis found no bias within replications (F = 0.38, df 

= 6, 101, P = 0.89). 

 There were no statistical differences found between treatments throughout time. 

No statistical differences were found between means of dead workers by treatment 

throughout time (Table 6.1, Fig. 6.2). At 14 d post-treatment, the only statistically 

significant differences (P = 0.028) were found between treatments of live larvae (Table 

6.2, Fig. 6.3). However, the results did not differentiate the control means from two of 

the AI treatments (0.1 and 0.5%). The results for both dead workers and live larvae were 

inconclusive. 

 

Discussion 

 Despite, a supposed ideal environment of temperature and humidity (29.45ºC ± 

0.007, 64.57% ± 0.09, respectively), workers and brood of replications began dying at a 

surprising rate. Because of this, the original experiment was cancelled and performed 

again. The initial experiment was run under the same parameters (with exception of 100 

brood rather than 50) and was considered a failure. Statistical analyses were conducted 

on the truncated data and no apparent biases were found within the experiment. We 

believe that this demonstrated the difficulties in maintaining P. sp. nr. pubens in colony-

form with such low numbers and without the presence of queens. 
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Table 6.1. Mean # of dead P. sp. nr. pubens workers throughout time treated with 

novaluron using Advance Carpenter Ant Bait matrix amended with novaluron. 

 Mean (SE ±) # of dead workers throughout time (d)a 

Treatment (AI%) 3b 7c 14d 28e 

0.10 9.14 (3.13) a 21.14 (3.26) a 32.29 (5.68) a 55.14 (4.74) a 

0.25 6.86 (3.13) a 14.43 (3.26) a 22.00 (3.35) a 41.14 (5.49) a 

0.50 4.57 (0.95) a 20.86 (5.39) a 32.00 (6.39) a 53.43 (6.3) a 

0.0 (Control) 9.00 (3.18) a 22.29 (5.81) a 32.57 (5.37) a 59.00 (8.03) a 

a Means with same letter in the column are not significantly different (P < 0.05; Tukey’s 
HSD). 
b F = 0.818, df = 3, 27, P = 0.497 
c F = 0.644, df = 3, 27, P = 0.595 
d F = 0.937, df = 3, 27, P = 0.438 
e F = 1.504, df = 3, 27, P = 0.239 
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Table 6.2. Mean # live P. sp. nr. pubens larvae throughout time treated with novaluron 

using Advance Carpenter Ant Bait matrix amended with novaluron. 

 Mean (SE ±)  # of live larvae throughout time (d)a 

Treatment (AI %) 3b 7c 14d 28e 

0.10 20.71 (1.52) a 6.71 (1.29) a 3.86 (1.18) ab 0.17 (0.17) a 

0.25 23.29 (1.69) a 7.57 (1.09) a 1.57 (0.65) b 0.00 (0) a 

0.50 20.43 (1.88) a 9.00 (1.42) a 5.86 (1.96) ab 1.00 (0.45) a 

0.00 (Control) 27.00 (2.04) a 8.71 (1.51) a 7.29 (1.11) a 0.83 (0.65) a 

a Means with same letter in the column are not significantly different (P < 0.05; Tukey’s 
HSD). 
b F = 2.894, df = 3, 27, P = 0.056 
c F = 0.628, df = 3, 27, P = 0.604 
d F = 3.589, df = 3, 27, P = 0.028 
e F = 1.620, df = 3, 27, P = 0.216 
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Advance Bait impregnated with novaluron 
concentrations against worker P . sp. nr. pubens
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Figure 6.2. Mean number of dead P. sp. nr. pubens workers exposed to Advance 

Carpenter Ant Bait amended with various novaluron concentrations. 
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Advance Bait impregnated with novaluron 
concentrations against larval P . sp. nr. pubens
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Figure 6.3. Mean number of live P. sp. nr. pubens larvae exposed to Advance Carpenter 

Ant Bait amended with various novaluron concentrations.
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Figure 6.4. This picture demonstrates the provisioning of the bait inside the Petri dish. 

The square shows provisioned bait granules for 0.1% AI treatment. The circle shows 

workers tending several larvae.
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 Paratrechina sp. nr. pubens provisioned the bait granules (both control and AI) 

(Fig. 6.4).  The bait was often placed inside the Petri dish or upon and around the water-

wick. This created an ideal environment (high moisture) for fungal growth. It also 

created temporally increased contact with the AI. These facts may have hampered the 

ability to perform a more informative test. However, if statistical differences were to be 

found, they would have likely occurred at greater than 28 d post-treatment. 

 Formicid species often demonstrate temporal fluctuation of food resource 

consumption. This is not an ideal situation for IGR efficacy experiments. For efficacy of 

IGRs, there needs to be enough AI titer at a specific given interval (i.e. during larval 

molt). Because formicids select alternative food resources throughout time, 

administering an IGR can be a difficult task. Nevertheless, based on these results, this 

product cannot be recommended nor condemned for the control of P. sp. nr. pubens. 

Further laboratory studies should include whole colony tests with natural ratios of brood 

workers and queens. If used in the field, it would likely be most effective to broadcast 

large quantities of the bait during early spring as large numbers of brood are maturing. 

Although not supported from these results, there remains the possibility that 

novaluron is ineffective against P. sp. nr. pubens. Another study conducted during 

control experiments for red imported fire ant, Solenopsis invicta, found results that did 

not support the use of another IGR against another Paratrechina sp. (Sanchez 2005). An 

increase in Paratrechina terricola populations were collected in trees located in areas 

treated with methoprene. 
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 A previous experiment (Meyers et al., unpublished data), field observations, and 

communication with various pest control operators with clientele affected by P. sp. nr. 

pubens suggest the current label rate for ACAB (abamectin) is not effective. The 

currently recommended rate of 1.5 lbs per acre is unlikely to create or sustain control of 

the numerically dense P. sp. nr. pubens populations. If an additional AI was integrated 

into the product or an increase in the current broadcast rate, the efficacy of ACAB may 

increase. If additional bait amount is used, the efficacy of the product will likely increase 

substantially. The field effectiveness of this product at current label and expanded usage 

should be assessed against P. sp. nr. pubens in early spring.  

 P. sp. nr. pubens are considerably attracted to the ACAB matrix in the laboratory 

and field. It is therefore recommended that ACAB with novaluron be tested against large 

laboratory colonies (with a full compliment of castes). Field observations suggest an 

immense increase in numbers of P. sp. nr. pubens brood and worker members during 

early spring. During this period foraging for food sources high in protein is needed for 

brood production. ACAB contains a marine lipid based attractant. Therefore, this 

product may be a viable option as part of a temporally dynamic control program against 

P. sp. nr. pubens.  

The failure of this laboratory study underscores the difficulties of maintaining 

relatively small, queenless colonies of P. sp. nr. pubens in the laboratory. Although it is 

not known whether the lack of queens adversely affected the outcome of the study, it 

could be one of the contributing factors. 
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CHAPTER VII 

 

FIELD EFFECTIVENESS OF ADVANCE™ CARPENTER ANT BAIT 

AMENDED WITH DINOTEFURAN FOR CONTROL OF  

Paratrechina SP. NR. pubens 

 

Introduction 

Dinotefuran, N-methyl-N’nitro[N”-[(tetrahydro-3-furanyl)methyl]guanidine, acts 

as a neuron-excitatory and neuron-blocking mechanisms in a variety of insects 

(Kiriyama and Nishimura 2002). Neonicotinoids are a relatively safe group of pesticides 

(Kiriyama and Nishimura 2002, Corbel et al. 2004) that can be used against a broad-

spectrum of insect groups (Mori et al. 2001, Kiriyama and Nishimura 2002, Kiriyama et 

al. 2003, Corbel et al. 2004, Miyagi et al. 2006). However, there has been no published 

research regarding dinotefuran’s use against pest ants. 

A recent successful introduction of an invasive ant species, Paratrechina sp. nr. 

pubens, to Texas, U.S.A., has created numerous economic and ecological concerns. 

Spread of this species has occurred at ~30 m per mo in urban areas (Meyers and Gold 

unpublished a). Spread of P. sp. nr. pubens in non-urban areas is likely to occur at high 

rates. Territorial expansion of a close taxonomic relative, P. fulva, has been known to 

occur at ca. 100 m per mo with rivers as the only geographical barrier to advancement 

(Zenner-Polania 1990). Expansion of a similar unicolonial ant, the Argentine ant, 

Linepithema humile has been variably reported from 1.3 (Holway 1998b), to 5.5 (Fluker 
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and Beardsley 1970), to 8.3 (Erickson 1971), 22.8 (Pasfield 1968) to 62.5 m per mo 

(Krushelnycky et al. 2004). These findings have been greatly dependent upon landscape 

suitability for L. humile. Landscape suitability estimations will help to develop accuracy 

regarding potential geographical invasions and subsequent economic and ecological 

damage assessments of P. sp. nr. pubens. It is imperative that basic science be completed 

regarding control of P. sp. nr. pubens. 

Control of aggressively expanding territories of the unicolonial ant, L. humile has 

been implemented using broadcast baiting over large geographical areas (Kruchelnycky 

et al. 2004). Control efforts of other behaviorally similar and high density invasive ant 

species using a solitary control measure or incorporation of multiple management 

strategies should be investigated for P. sp. nr. pubens. 

A laboratory study found successful control using dinotefuran in liquid bait 

formulation against P. sp. nr. pubens (Meyers and Gold unpublished c). This promising 

study suggested field effectiveness trials using a different bait matrix should be 

investigated.  

Advance™ Carpenter Ant Bait (ACAB) is prescribed for use against a wide 

variety of ants including: Paratrechina longicornis, Camponotus spp., Solenopsis 

invicta, Crematogaster spp., L. humile, among others. ACAB has been successfully used 

against a turf pest ant, Lasius neoniger Emery (Lopez et al. 2000). Using the behaviors 

(trophollaxis, grooming, communication efforts, etc.) of this social ant to its detriment 

may assist in whole colony elimination. The use of delayed-action insecticides, such as 

baits, may offer a more effective treatment against P. sp. nr. pubens than other control 
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methods such as direct sprays or repellents. Whole colony elimination will be difficult 

because of the lack of interspecific aggression between P. sp. nr. pubens colonies, 

creating unicolonial situations with extremely high densities. 

Baiting techniques are a targeted form of control that is relatively harmless to 

non-target species (Pimental 1995). It has been estimated that < 0.1% of pesticides find 

their target (Pimental 1995). However, not all pesticides are intended to reach their 

destination (e.g. repellants, pheromones, etc.), and not all pesticide dissipation events are 

environmental (e.g. photolysis, non-specific binding, volatilization, microbial, etc.). 

Further evaluations of ACAB containing dinotefuran should be conducted to corroborate 

baiting techniques for P. sp. nr. pubens. 

There have been no published studies involving field efficacy of ACAB with 

dinotefuran against pest insects. This study evaluated the biological activity of 

dinotefuran field treatments against P. sp. nr. pubens. Amending dinotefuran into ACAB 

blanks (ACAB without active ingredient (AI)) was tested as a solitary control measure 

against P. sp. nr. pubens. The current experiment evaluated the use of ACAB with 

dinotefuran over small geographical areas against P. sp. nr. pubens. This study provides 

needed field effectiveness data for dinotefuran baiting as a potential control for 

numerically dense P. sp. nr. pubens. 
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Materials and Methods 

The level of infestation and efficacy of outdoor treatments for the control of 

Paratrechina sp. nr. pubens were evaluated on 30 plots in Harris County, TX from 

August to September 2006. Plots consisted of mostly grasses with intermittently 

dispersed trees of variable size (Fig. 7.1a). The northeastern part of the field was 

separated by railroad tracks which physically separated some treatments. Food attraction 

activity was used as an indication of population density. Food attraction activity was 

measured using baited vials placed inside the plots to determine the extent of P. sp. nr. 

pubens infestations within plots. Each bait station included two glass screw top vials (6 

cm length x 1.7 cm diameter; 8 ml); containing a ~1 cm3 piece of hotdog (as a protein 

source) or ~1 cm3 20% honey-water (as a carbohydrate source) soaked cotton, 

respectively. Each vial was placed within a poly-vinyl pipe (10 cm length x 2.5 cm 

diameter) to avoid overheating of the vials. Bait stations were placed at the corners (x4) 

and at the center (x1) of each plot. To avoid additional overheating of vials, bait stations 

were placed in shaded areas where possible.  

Bait stations were placed out ~06:00-09:00 CST or ~19:30-22:00 CST for 30-45 

min. Vials were then collected, capped, labeled and brought back to the lab for counts 

and analyses. Pre-treatment counts were conducted in the morning (06:00-9:00 CST) of 

treatment prior to application. 

Technical grade dinotefuran (99.5%) was diluted in deionized water. Dinotefuran 

was added at a rate of 0.1 or 0.001 ml active ingredient (AI) per 100 g unamended 

(ACAB) with intermittent spraying and agitation inside a Plexiglas raffle drum (54.6 w x  
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Figure 7.1. a) Overview of field plots with Easterly field plot region in near view. b) 

Westerly field plot area. c) This figure demonstrates the distance between each plot. 

Field plot example with view of Easterly field plots and adjacent vegetation structure. d) 

Raffle drum used to agitate and aerate the dinotefuran-bait mixture. 
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43.2 d x 47.6 h cm) (Fig. 7.1b) to ensure thorough mixing of AI to bait matrix. This 

procedure was preliminarily tested for dinotefuran-bait mixture using dyed water to 

ensure consistent spray distribution. The new dinotefuran bait was then allowed to dry to 

avoid fungal growth or decomposition of the bait contents.  

Dinotefuran bait treatments included 0.1, 0.001, and 0.0% AI at the rates of 1.5 

and 3.0 lb per acre. The applications were broadcast over 30.48 x 10.97 m (334.37 m2) 

plots. Each of the plot was separated by a distance of ~1.52 m (Fig. 7.1c). Pythagorean’s 

Theorem was used to ensure 90° angles of the plots. Treatments were applied using a 

Completely Randomized Design (CRD). A total of 16 of the 30 plots were on the eastern 

side of the field (Fig. 7.1c). These plots were easterly adjacent to an unkempt area that 

contained high amounts of vegetation structure. The remaining plots (n = 14) were 

located on the western side of the railroad tracks (Fig. 7.1d). These plots were in a more 

exposed area of the field receiving more sunlight than the other group and contained 

fewer, smaller trees. The field of grasses was cut to 15-20 cm prior to treatment. 

Data were analyzed using SPSS® software (SPSS Inc. 2005). Univariate 

ANOVA was conducted to determine significant differences among means of treatment, 

position among plots, and time. Tukey’s HSD was used for means separation. ANOVA 

was conducted on these data to determine significant differences among bait station 

position. Paired t-tests were conducted to determine differences among the food resource 

and plot position.  
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Results 

There were significant differences found between Paratrechina sp. nr. pubens 

means of treatments throughout time (F = 4.37, df = 20, 1299, P < 0.001) (Table 7.1, 

Fig. 7.2). When comparing significant differences between control and AI treatments, 

differences in food resource allocation throughout time were clearly observed. Paired t-

tests demonstrated significant difference between the food resources regardless of 

dinotefuran or control treatments (t = 8.81, df = 649, P < 0.001) (Table 7.2). Paired t-test 

among control treatments also indicate significant differences in food resource allocation 

(t = 5.35, df = 224, P < 0.001) (Table 7.2). This finding may demonstrate a strong 

relationship between protein:carbohydrate allocations among healthy P. sp. nr. pubens 

populations. Paired t-test among treatments also suggested significant differences in food 

resource allocation (t = 7.00, df = 424, P < 0.001) (Table 7.2).  

Multivariate analysis of mean number of P. sp. nr. pubens per vial during pre- 

and post-treatment counts revealed significance differences between food resource over 

time (F = 38.71, df = 4, 645, P < 0.001; F = 63.19, df = 4, 645, P < 0.001) (Table 7.3, 

Fig. 7.3). There was also a statistical difference between the position of bait stations (F = 

9.15, df = 4, P < 0.001) (Table 7.4). 

A total of four plots were excluded from the experiment due to increased sunlight 

exposure during bait station retrieval and resultant inactivity of P. sp. nr. pubens. Other 

data that were possibly biased due to vegetation proximity and sunlight exposure were 

isolated and further data analyses were conducted. ANOVA determined that vials 

located on the easterly side of the plots split by the railway East (16 plots) and West (10 
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plots) had significantly higher means of P. sp. nr. pubens (F = 41.78, df = 1, 518, P < 

0.001) (Table 7.5). 

 

Table 7.1. ANOVA of mean number (± SE) of P. sp. nr. pubens per vial over all time by 

treatment. 

Treatment Number of vials sampled Mean (± SE)abc 

5 (0.1% at 1.5 lb) 200 54.41 (3.52) a 

6 (0.1% at 3.0 lb) 250 59.56 (3.15) a 

2 (Control at 3.0 lb) 250 74.39 (3.15) b 

3 (0.001% at 1.5 lb) 200 76.06 (3.52) b 

4 (0.001% at 3.0 lb) 200 91.50 (3.52) c 

1 (Control at 1.5 lb) 200 92.78 (3.52) c 

aMeans with same letter in a column are not significantly different (P < 0.05; Tukey’s 
HSD). 
bF = 4.37, df = 20, 1299, P < .001 
cSE results found using harmonic mean 
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Table 7.2. Paired t-test of mean number (± SE) of P. sp. nr. pubens by food resource for 

control and treated plots. 

 Food resource 

Treatment Hot dog Honey water 

Controla 97.45 (4.26) 67.67 (3.78) 

Dinotefuranb 83.06 (3.27) 56.43 (2.66) 

Allc 88.04 (2.61) 60.32 (2.18) 

at = 5.35, df = 224, P < 0.001 
bt = 7.00, df = 424, P < 0.001 
ct = 8.81, df = 649, P < 0.001 

 

Table 7.3. Multivariate ANOVA analysis of mean number (± SE) of P. sp. nr. pubens 

per vial over time by food resource. 

 Food resourceab 

Time Honey waterc Hot dogd 

Pre-count 92.85 (±4.40) a 92.29 (±4.96) c 

Day 3  73.34 (±4.40) b 52.64 (±4.96) d 

Week 1 70.85 (±4.40) b 47.28 (±4.96) d 

Week 2 45.11 (±4.40) c 110.97 (±4.96) b 

Week 4 22.30 (±4.40) d 140.19 (±4.96) a 

aMeans with same letter in a column are not significantly different (P < 0.05; Tukey’s 
HSD). 
bSE results found using harmonic mean 
cF = 38.71, df = 4, 645, P < .001 
dF = 63.19, df = 4, 645, P < .001
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Table 7.4. Mean number (± SE) of P. sp. nr. pubens per vial by position around 
structures.  

Position Mean number of P. sp. nr. pubensabc 

Center 60.92 (3.11) a 

Southwest 69.81 (3.11) ab 

Northwest 76.94 (3.11) bc 

Southeast 82.78 (3.11) c 

Northeast 83.29 (3.11) c 

aMeans with same letter in a column are not significantly different (P < 0.05; Tukey’s 
HSD). 
bF = 9.15, df = 4, P < .001 
cSE results found using harmonic mean open  

 

 

Table 7.5. A paired t-test of mean number (± SE) of P. sp. nr. pubens of easterly and 

westerly located by plot position (separated by the railroad tracks). 

Plot position Mean number of P. sp. nr. pubens of vial locationa 

Western 59.89 (4.25) 

Eastern 96.37 (3.58) 

aF = 41.78, df = 1, 518, P < .001 
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Figure 7.2. Mean number of P. sp. nr. pubens by time and treatment. 
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 Figure 7.3. Mean number of P. sp. nr. pubens by time and food resource. 

 

Discussion 

The experiment was concluded at four wk, prior to the intended study length of 

12 wk. At the beginning of the treatments, all plots were 15-20 cm grass height. At the 

time of the conclusion of the experiment (four wk) the height of the grasses was ca. chest 

height (~ 1.5 m). This vegetative growth impeded the researcher (JM) from re-attaining 

placed bait stations and slowed bait station recovery during the allotted time period. 
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Field observations also made it apparent that the treatments were not having the desired 

control effect. For these reasons, the experiment was concluded at four wk. 

Limitations of count time intervals were caused by extreme heat in the treated 

areas that restricted foraging by Paratrechina sp. nr. pubens. During the four wk study, 

temperatures ranged from 23.9 – 37.1°C (28.4 ± 0.3). These time limitations decreased 

replications of some treatments during pre- and post-treatment counts. These extreme 

temperatures occurred during the late morning (~ 09:00) until evening (~ 19:00). 

According to field observations (by JM), the PVC-pipe surrounding the vials did not 

completely prevent extreme temperatures that were obviously outside the range of 

foraging behavior for P. sp. nr. pubens. Although unlikely to decrease all of the extreme 

temperatures, future field studies should include use of more light reflective colors such 

as sky blue or tan for the PVC-pipes which may reduce temperatures within and around 

the vials. These colors have been known to capture less heat due to their respective 

activation energies from color saturation with visible light intensity. 

All treatment rates of the bait were above the currently described rate on the label 

for ACAB. The rates were intended to surpass the currently prescribed rates due to the 

immense numbers of P. sp. nr. pubens observed in the field and the ineffective control 

found by various Pest Control Operators (PCOs) in the field using the current label rate. 

Throughout time, means of treatments five and six were significantly less than all 

other treatments (Table 7.1). Despite treatments five and six being significantly less than 

all other treatments (1-4) (Table 7.1, Fig. 7.2), it does not indicate successful or 

satisfactory control of P. sp. nr. pubens using treatments five or six. More likely, this 
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indicates the remarkable numbers and fecund capabilities of P. sp. nr. pubens that 

overcame the treatments during pre- and post-application of the treatments. This also 

implicates the population pressure created from outside the treated plots that foraged or 

re-colonized treated plots. Treatments five and six contained the highest concentration 

(0.1% AI) of dinotefuran of all treatments. These findings warrant further investigations 

into higher dinotefuran concentrations and/or bait quantity. However, higher 

concentrations of dinotefuran may negatively influence bait attraction. No studies have 

been conducted to investigate the repellency of P. sp. nr. pubens to dinotefuran 

concentrations. Uses of other corncob grit bait mediums (other than ACAB) are less 

likely to be successful. Field observations from various PCOs do not support many other 

bait matrices as an attraction alternative for P. sp. nr. pubens control. According to some 

PCOs, all other currently available baits in the market known to attract P. sp. nr. pubens 

include sugar-based gels. The gel baits may be unlikely control measures given the 

densities of P. sp. nr. pubens and apparent product quantities that would likely include 

repeated treatments for adequate control. More sugar-based gel bait research efforts are 

needed to support or refute this assessment based on field observations and suppositions 

from PCOs. Results from treatments three and four were not statistically different from 

control treatments (one and two) (Table 7.1). Treatments three and four (0.001% AI) are 

not viable options for control of P. sp. nr. pubens, nor are these treatments at 

concentrations that need further investigation at the rates (1.5 or 3.0 lb per acre) 

evaluated in this study. 
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Seasonal fluctuation of nutritional needs for insects (especially ants) can inhibit 

experimental results and conclusions, especially in the field. There was a statistical 

similarity between food resource means during pre-counts. However, there was 

significant difference found between food resource means during the 4 wk count. The 

sudden temporal differentiation found between food resource means of pre-count and 3 d 

may indicate an immediate behavioral response to the treatment resulting in deviation 

from normal food resource allocation ratios (Table 7.3). This offers further evidence that 

food resource allocation of protein:carbohydrate ratios change over time for P. sp. nr. 

pubens, resulting in a higher protein intake during late summer. This could however, 

partially be explained by a change in seasonal nutritional requirements. Table 7.3 and 

figure 7.3 demonstrates a significant divergence in food resource allocation of 

protein:carbohydrate ratios. These investigations may need to consider a temporally 

dynamic baiting system to optimize bait intake throughout the season. Further 

investigations will need to be conducted to elucidate a conclusion regarding the 

significance of treatment and seasonal nutrition effects on P. sp. nr. pubens. Further 

studies should also include a year-round investigation of temporal changes of 

protein:carbohydrate ratios. These findings will have direct implications on further 

laboratory and field oriented research of P. sp. nr. pubens biological estimations.  

Statistical differences found by multivariate analyses (Table 7.3) between 

treatments may imply that the treatments caused a shift in protein:carbohydrate ratio 

attraction. This occurrence could be explained as a negative reaction to the insecticide 

causing abnormal food resource attraction ratios. More investigations regarding 
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behavioral changes and resultant nutritional deficits post-dinotefuran contact and/or 

ingestion are advised. However, the likely explanation is food resource allocation ratios 

naturally change over time as control treatments alone demonstrated statistical 

differences. The nutritional impact of non-AI treatments on pest insects may influence 

food resource allocation. The no AI ACAB matrix contains powdered sugar (5%), 

shrimp powder (15%), and soy oil (10%). These food resources may influence the 

outcome of control treatments for P. sp. nr. pubens and subsequent seasonal food 

resource allocation. Although not investigated, the impact for this study is likely 

negligible. The significant increase in means near vegetative overgrowth indicates that 

vegetation must be controlled to increase treatment efficacy of P. sp. nr. pubens. 

Significant differences were found in the mean number of P. sp. nr. pubens by 

position (Table 7.4). The eastern portions of the plots had the highest means regarding 

positioning within the plots. This outcome may have been influenced by the vegetative 

overgrowth found near the eastern side of the property adjacent to several of the plots 

(Eastern plots). This vegetative overgrowth likely encourages higher densities of P. sp. 

nr. pubens, influencing the population influx of the eastern positions. Edge effects may 

have been a factor for the difference established between the center and outer positions. 

This conclusion may have restrictions in urban environments, as this scenario is more 

applicable as the center could constitute a house or structure.  

This experiment does not indicate that these treatments are a viable option for 

control of P. sp. nr. pubens at the rates and conditions of the current study. There may be 

several reasons for lack of success: First, the treatment should include a broadcast 
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treatment covering the surrounding areas of the desired control area. Population influx of 

P. sp. nr. pubens from surrounding treated and untreated areas near the treatment 

replications may have influenced results. Secondly, the lack of success may also be 

attributed to the high environmental temperatures and photodegredation of the AI 

(dinotefuran). Time constraints for the experimental treatments only allowed for mid-

morning application, during which, temperatures ranged 32.2 - 33.3°C. These 

temperatures and the preceding day temperature high of 36.1°C may have increased 

dinotefuran and/or bait photodegredation. This is unlikely given the high densities of P. 

sp. nr. pubens and the likelihood that most if not all of the bait was discovered and 

allocated prior to the proceeding day. Thirdly, the treatments may not have included 

enough AI or product quantity. An increase in the amount of dinotefuran concentration 

may offer a more viable option for control. As discussed above, the amount of 

dinotefuran concentration that causes repellency of P. sp. nr. pubens has not been 

investigated. However, increasing the product application rates > 0.1% concentration 

may adequately cause the desired efficacy against P. sp. nr. pubens. Lastly, the day of 

treatment was followed by 1.93” of rain the next day (as reported form Houston/Hobby 

Airport, TX). This may have caused an adverse affect on the efficacy of the treatment. 

Dinotefuran has a 1.8 d Aqueous Photolysis Half-Life (APHL) (EPA 2004). APHL was 

an unlikely mode of dissipation for dinotefuran during this experiment as the product 

was applied during mid-day when no aqueous condensation was apparent and likely 

allocated prior to the rain event. This adverse outcome is unlikely to have caused poor 

insecticidal performance because of the persisting temporal statistical differences 
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demonstrated in the treatments (Table 7.1). The exact scope and nature of the poor 

efficacy of these treatments remains undetermined. 

The design regarding the bait station positions enabled an evaluation applicable 

to a typical treatment for ants surrounding or infesting a structure. Therefore, these 

negative results may be applicable to a control situation regarding a structural treatment. 

It may therefore be concluded that the presented treatments should not be used as a 

“stand-alone”, however, may be an excellent choice as a supplementary control 

application for a field or structure. If used as the solitary control measure against P. sp. 

nr. pubens infestations, ACAB with dinotefuran should be applied at considerably larger 

rates and concentrations than suggested by the current label guidelines. Current 

maximum label rates, mandated by the EPA, of potential control products are inadequate 

regarding the biology and densities of Linepithema humile (Silverman and Brightwell 

2008). Use of ACAB with dinotefuran as an exclusive management tool against P. sp. 

nr. pubens should also be broadcast on a large geographical scale for control within 

desired areas. Similar conclusions have been found regarding control and resurgence 

origin research of large infestations of the Argentine ant, L. humile (Vega and Rust 

2003). Historical evaluations of baiting control techniques of similar invasive species, L. 

humile (Kruchelnycky 2004) and the yellow crazy ant, Anoplolepis gracilipes, (Abbott 

and Green 2007) may be applicable to P. sp. nr. pubens control efforts. It has been 

proposed that more aggressive and comprehensive control strategies should be employed 

regarding large populations of the unicolonial L. humile (Silverman and Brightwell 

2008).  
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The current study represents the only field efficacy evaluation against insects 

using ACAB with dinotefuran to date. This field experiment demonstrated initial success 

despite overwhelming numbers of P. sp. nr. pubens. The lack of consistent temporal P. 

sp. nr. pubens control indicates the need for larger concentrations and/or rates of ACAB 

with dinotefuran. Additional temporal applications of ACAB with dinotefuran against P. 

sp. nr. pubens should be evaluated. Also, an integration of an ACAB with dinotefuran 

treatment into a temporally comprehensive control strategy should be investigated. The 

likely application of ACAB with dinotefuran may be best within a more comprehensive 

control plan for the numerically superior pest, P. sp. nr. pubens.
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CHAPTER VIII 

 

FIELD EFFECTIVENESS OF CURRENT AND EXPANDED LABEL 

TREATMENTS AGAINST AN INVASIVE ANT PEST, Paratrechina SP.  

NR. pubens (HYMENOPTERA: FORMICIDAE), OF TEXAS 

 

Introduction 

Fipronil is a broad spectrum insecticide that which has been used with great 

success. Fipronil, 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(1R,S)-

(trifluoromethyl)sulfinyl]-1H-pyrazol-3-carbonitrile, is a phenylpyrazole, a class of 

insecticides that act at the γ-aminobutyric acid (GABA)-gated chloride channel (Kidd 

and James 1991, Cole et al. 1993). Although environmental fate concerns about fipronil 

have been raised (Chaton et al. 2002), its soil binding capacity, (KOW = 4.01 and KOC = 

803), and environmental instability (low vapor pressure, aqueous photolysis = 4.1 h, 

very susceptible to photolysis, significant microbial degradation) (Connelly 2001) are 

high, making fipronil more environmentally acceptable. For this reason, fipronil has 

been utilized against insects in a number of ways. Successful control has been 

demonstrated after fipronil soil treatments against a unicolonial tramp ant, the Argentine 

ant, Linepithema humile (Costa and Rust 1998). Significant reductions have been found 

when using bait integrated with fipronil against L. humile and the red imported fire ant, 

Solenopsis invicta (Klotz et al. 2003b, Collins and Callcott 1998, respectively). Barrier 
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treatments using fipronil against L. humile have resulted in successful population control 

(Soeprono and Rust 2004). 

Chlorfenapyr, 4-bromo-2-(4-clorohenyl)-1(ethoxymethyl)-5-(trifluoromethyl) 

pyrrole-3-carbonitrile, is a pyrrole used as a contact and stomach poison insecticide and 

miticide (Thomson 2001). Successful control of a variety of arthropod structural pests 

has been obtained utilizing the insecticide chlorfenapyr. These insect groups, for which 

chlorfenapyr is efficacious, include; cockroaches (Ameen et al. 2000), beetles (Arthur 

2008), ants (Buczkowski et al. 2005), and at high concentrations, termites (Rust and 

Saran 2006).  

Abamectin is an avermectin effective against a number of arthropods. 

Avermectins block GABA transmission resulting in inhibition and excitation of neurons 

(Lasota and Dybas 1991) resulting in death. Although use of abamectin resulted in 

survival of queens and workers, significant population reduction of L. humile has been 

achieved (Hooper-Bui and Rust 2000). Control of Haematobia irritans has been 

demonstrated during abamectin evaluations of cattle applications (Doherty et al. 1994, 

Guglielmone 1999). Use of abamectin for agricultural pests has been demonstrated on 

the citrus leafminer, Phyllocnistis citrella Stainton (Rae et al. 1996). Abamectin has also 

been formulated into a granular bait product, AdvanceTM Carpenter Ant Bait (ACAB). 

There have been several successful population management strategies involving this 

product. Successful control of turf grass pests such as mound-building ant, Lasius 

neoniger Emery (Lopez et al. 2000, Shetlar 2003). ACAB has been used against 

American and German cockroaches, Periplaneta americana and Blattella germanica, 
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respectively, with significant success (Appel et al. 2005). This and the aforementioned 

AIs, given their varied uses against other pest ant species across the U.S., provide 

compelling possibilities as potential control candidates for remedial applications to arrest 

a new exotic ant species introduced to Texas. 

Paratrechina sp. nr. pubens is a recently introduced ant pest to southern Texas, 

originating from Pasadena, TX. It is a tramp ant whose unicolonial behavior is caused by 

a lack of aggression between colonies. This lack of aggression toward conspecifics 

allows for unicolonial behavior attaining high densities (Hölldobler and Wilson 1977, 

Porter and Savignano 1990, Macom and Porter 1996, Holway 1998a). Since its 

introduction, P. sp. nr. pubens has become an immense pest due to its remarkable 

numbers (Fig. 8.1a) and ability to cause electrical shortages in a variety of equipment 

such as outlets (Fig. 8.1b), sewage lift pump stations, air conditioning units, computers, 

pool pumps, etc.. Residents of a Deer Park, TX neighborhood have reported household 

incursions by P. sp. nr. pubens and even organized a neighborhood meeting regarding 

their concerns. These complaints include kitchen, faucet, and bath infestations, telephone 

and electrical box shortages (Fig. 8.1c), and ant bites. Their densities have lead Pest 

Control Operators (PCOs) and consumers alike to undertake costly and unsuccessful 

control attempts.  

Observations of companion animals acting abnormally in the presence of this ant 

pest and undocumented effects on the indigenous arthropod and small vertebrate fauna, 

including a biotic homogenization of formicid species (Meyers and Gold unpublished a) 

and likely more adverse affects to other taxonomic arthropod groups. A similar invasive, 
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unicolonial ant in high densities, L. humile, has adversely impacted native systems in 

New Zealand (Harris 2002). L. humile has caused adverse effects on ant diversity 

(Human and Gordan 1996, Holway 1999), abundance and diversity of other 

invertebrates (Cole et al. 1992, Way et al. 1992, Human and Gordon 1997), vertebrate 

abundance (Suarez et al. 2000), pollination (Buys 1987, Visser et al. 1996), seed 

dispersal and regeneration (Bond and Slingsby 1984, Giliomee 1986), and 

decomposition and nutrient cycling (Ward 1987, De Kock 1990, Folgarait 1998). 

Currently no wide scale control programs for P. sp. nr. pubens have been 

instituted or proposed (R. Gold, pers. comm., Professor of Entomology, Texas A&M 

University; Tony Koop, pers. comm., botanist, New Pest Advisory Group). Although 

biological control efforts against P. sp. nr. pubens have certainly been considered, there 

is a certain risk associated with the potential for permanent ecological change 

(Simberloff and Stiling 1996). These introduced species intended for biological control 

of pest species may not have adverse effects exclusively on their intended target 

(Simberloff 1992). A species taxonomically similar to P. sp. nr. pubens, P. fulva, was 

introduced to control venomous snakes in Colombia, South America; however it had 

unintended consequences, causing biotic homogenizations of the arthropod community 

in addition to economic losses (Zenner-Polania 1990). 

It has been recommended that similar pest situations (P. fulva in Colombia) 

implement multiple control methods for success (Zenner-Polania 1994). This study 

evaluated the biological activity of various multiple-strategy treatments using Termidor® 
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SC (fipronil), Phantom® SC (chlorfenapyr) and Advance Carpenter Ant Bait G 

(abamectin) against P. sp. nr. pubens residential infestations. 

 

Materials and Methods 

The level of infestation and effectiveness of treatments for the control of 

Paratrechina sp. nr. pubens were evaluated on 40-single family homes in Harris County, 

TX from July to October 2006. To determine the extent of P. sp. nr. pubens infestations 

at the homes, we measured food attraction activity using baited vials placed both around 

and within the homes. Each bait station included two glass screw top vials (6 cm length 

x 1.7 cm diameter; 8 ml); containing a ~1 cm3 piece of hotdog (protein) and ~1 cm3 20% 

honey-water (carbohydrate) soaked cotton, respectively. Each vial was placed within a 

poly-vinyl pipe (10 cm length x 2.5 cm diameter) to avoid overheating of the vials. To 

avoid additional overheating of outdoor vials, bait stations were placed in shaded areas 

where possible. Outdoor bait stations were placed on the ground adjacent (within ~1 m 

of the foundation) to the corners and front porch of the homes. Indoor bait stations were 

placed in the kitchen and one bathroom during pretreatment counts.  

 Bait stations were placed out at 06:00-10:30 CST for 1-2 hr. Vials were then 

collected, capped, labeled and brought back to the laboratory for counts and analyses. 

Pre-treatment counts were conducted 0 - 10 d prior to treatment. Although 76.5% of the 

residents complained of indoor P. sp. nr. pubens infestations, field observations based on 

initial counts and further conversations with residents indicated an exceedingly random 

nature of P. sp. nr. pubens activity indoors. Indoor accessibility issues also became 
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apparent with 40 homes after the initial counts. After initial counts the unapparent 

relationship between ant activity, both indoor and out, justified the elimination of 

interior bait stations from the experiment. Post-treatment counts were then conducted as 

described above at ca. 3 d, 1, 2, 4, 8, and 12 wk.  

Treatments. To evaluate the biological activity of Termidor® SC, Phantom® SC 

and Advance Carpenter Ant Bait™ G (ACAB) against P. sp. nr. pubens infestations, 

treatments were conducted on 40 homes in Deer Park, TX. Treatments evaluated 

efficacy of 0.06 and 0.5% active ingredient (AI), fipronil, Termidor SC and 

chlorfenapyr, Phantom SC, respectively, applied at label rates. For this study, 104 

residents were contacted regarding possible study inclusion and 51 responded positively. 

Of these 51 residents, 40 were randomly chosen for the study based on the infestation 

level in the yard or home. Samples of P. sp. nr. pubens were taken from each residence 

and maintained in 95% ETOH. 

 In all treatments, volume was manually approximated by using pressure, 

broadcast volume, and travel rate in a manner consistent with turf applications of these 

products. Treatment A was applied to eight houses and included Termidor SC at 0.06% 

AI applied to exterior, per present label for nuisance ant control, and Phantom SC at 

0.5% AI applied to interior areas per present label. There were ~5.7-9.5 l (1.5-2.5 

gallons) of Termidor SC applied per house using a 190-l (50 gal.) gasoline powered 

sprayer equipped with a JD-9 gun 1.76-2.46 kscm (25-35 psi). There were ~1.9 l (0.5 

gal.) Phantom SC applied per house using a 3.78 l (1-gal.). B&G sprayer. Treatment B 

was applied to nine houses as described in Treatment A; however, with expansion of 
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Termidor SC spray area to 1 m up and 3 m out from the foundation. There were ~18.9-

28.4 liters (5 - 7.5 gal.) of Termidor SC applied per house. Treatment C was applied to 

nine houses as described in Treatment A; however, with broadcast treatment of yard 

with ACAB at 0.011% AI Bait was broadcast at 0.45 kg (1 lb) per acre rate using a 

hand-held Lawncrafter 45-0276 (Agri-Fab, Sullivan, IL). For treatments A, B, and C, 

any apparent P. sp. nr. pubens outdoor nesting sites proximal to applied areas were 

directly treated with Termidor SC spray. However, the unapparent nest building 

behavior of P. sp. nr. pubens allowed for only rare instances of direct spray. Treatment D 

included non-treated controls of 11 houses and sprayed with water containing no AI 

Despite yard infestations, some homes had obvious insecticidal treatments prior to or 

during the experiment that adversely affected P. sp. nr. pubens activity. Of the original 

40 homes, three of the house data sets were discarded because the residents attempted 

significant remediation attempts that involved insecticide treatments. Residents were 

surveyed regarding their satisfaction of the treatments pre- and post-experiment. 

Statistics. Data were analyzed using SPSS® software (SPSS 2005). A paired t-test 

was conducted to conclude differences among food resources. Univariate ANOVA was 

conducted on these data to determine significant differences among treatments, food 

types, position surrounding the house, between houses, and time. Tukey’s HSD was used 

for means separation at the α = 0.05 level.  
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Results 

Food resource means were compared using paired t-test and demonstrated 

significant statistical difference (t = 4.84; df = 1249; P < 0.01) (Table 8.1). Results for 

isolating each of the food resources by treatment over time demonstrate identical 

statistical conclusions regarding treatment (P < 0.05; Tukey’s HSD) (Table 8.2). There 

was no statistical difference among food resource means of P. sp. nr. pubens means 

regarding time (P < 0.05, Tukey’s HSD) (Table 8.3, Fig. 8.2). Significant statistical 

differences were found between AI treatments (A, B, and C) and the control treatment 

(D) (F = 113.24, df = 3, 2499, P < 0.001) (Table 8.4). Statistical differences were found 

between treatments when isolating pre and post-treatment means (P < 0.05; Tukey’s 

HSD) (Table 8.5). There were significant differences among P. sp. nr. pubens means 

over time when regarding all treatments (F = 39.35, df = 6, 2499, P < 0.001) (Table 8.6). 

A percent of population reduction from the pre-treatment counts and subsequent post-

treatment counts is presented (Table 8.7). 

 

Table 8.1. Paired t-test of mean (±SE) number of P. sp. nr. pubens per vial by food 

resource. 

Food resource Mean (±SE) 

Hot dog 20.22 (1.23) 

Honey water 14.07 (0.92) 

at = 4.84; df = 1249; P < 0.01 

 



 

Table 8.2. ANOVA of mean (±SE) number of P. sp. nr. pubens per vial by food resource by treatment over all time counts. 

Treatment Mean (±SE) # for both food 

resourcesab 

Mean (±SE) # for 

proteinac 

Mean (±SE) # for 

carbohydratead 

A (Phantom, Termidor) 9.13 (1.42) a 10.86 (2.10) a 6.31 (1.66) a  

B (Phantom, Termidor-expanded) 8.59 (1.34) a 11.32 (2.23) a 6.94 (1.76) a 

C (Phantom, Termidor, ACAB) 10.41 (1.35) a 10.90 (2.11) a 9.92 (1.67) a 

D (no AI) 36.86 (1.27) b 43.98 (1.99) b 29.73 (1.57) b 

aMeans with same letter in a column are not significantly different (P < 0.05; Tukey’s HSD). 
bF = 113.24, df = 3, 2499, P < 0.001 
cF = 65.96, df = 3, 1249, P < 0.001 
dF = 47.98, df = 3, 1249, P < 0.001
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Table 8.3. ANOVA of mean (±SE) number of P. sp. nr. pubens per vial by food 

resource and all time counts. 

Time Means (±SE) both 

food resourcesab 

Means (±SE) protein 

food resource onlyac 

Means (±SE) carbohydrate 

food resource onlyad 

Pre-count 40.23 (1.76) c 54.07 (2.77) c 26.39 (2.18) d 

Day 3 8.65 (1.76) a 10.91 (2.76) a 6.39 (2.18) ab 

Week 1 11.48 (1.77) ab 7.88 (2.77) a 15.07 (2.19) cd 

Week 2 10.89 (1.77) ab 10.54 (2.77) a 11.25 (2.19) abc 

Week 4 9.52 (1.78) a 8.67 (2.79) a 10.38 (2.20) abc 

Week 8 14.94 (1.80) ab 13.75 (2.83) a 16.13 (2.23) bc 

Week 12 18.00 (1.81) b 29.04 (2.84) b 6.96 (2.24) a 

aMeans with same letter in a column are not significantly different (P < 0.05; Tukey’s 
HSD). 
bF = 14.23, df = 6, 2499, P < 0.001 
cF = 37.36, df = 6, 1249, P < 0.001 
dF = 9.81, df = 6, 1249, P < 0.001
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Table 8.4. ANOVA of mean (±SE) number of P. sp. nr. pubens per vial by treatment 

over all time counts. 

Treatment Mean (±SE) # P. sp. nr. pubens per viala 

A (Phantom, Termidor) 8.59 (1.34) a 

B (Phantom, Termidor-expanded) 9.13 (1.42) a 

C (Phantom, Termidor, ACAB) 10.41 (1.35) a 

D (no AI) 36.86 (1.27) b 

a Means with same letter in a column are not significantly different (P < 0.05; Tukey’s 
HSD).  F = 113.24, df = 3, 2499, P < 0.001 

 



 

Table 8.5. ANOVA of mean (±SE) number of P. sp. nr. pubens per vial by treatment for pre-treatment only, and both pre-

treatment and 12 wk post-treatment counts.  

Treatment Mean (±SE) # for 

pre-treatment onlyab 

Mean (±SE) # for 12 wk 

post-treatment onlyac 

Mean (±SE) # for both pre-

treatment and 12 wk post-

treatmentad 

A (Phantom, Termidor) 37.92 (5.46) ab 11.03 (3.38) a 24.30 (3.24) a 

B (Phantom, Termidor-expanded) 49.71 (5.07) a 3.37 (3.09) a 27.24 (3.07) ab 

C (Phantom, Termidor, ACAB) 42.57 (5.07) ab 14.43 (3.19) a 28.50 (3.03) ab 

D (no AI) 31.17 (4.68) b 42.78 (3.27) b 36.57 (2.95) b 

aMeans with same letter in a column are not significantly different (P < 0.05; Tukey’s HSD). 
bF = 2.64, df = 3, 363, P < 0.05 
cF = 28.50, df = 3, 351, P < 0.001 
cF = 3.17, df = 3, 706, P = 0.024

 

120



 121

Table 8.6. ANOVA of mean number of P. sp. nr. pubens per vial over time for all 

treatments. 

Time Mean (±SE) # P. sp. nr. pubens per viala 

Pre-count 40.23 (1.76) c 

Day 3 8.65 (1.76) a 

Week 1 11.48 (1.77) ab 

Week 2 10.89 (1.77) ab 

Week 4 9.52 (1.78) a 

Week 8 14.94 (1.80) ab 

Week 12 18.00 (1.81) b 

aMeans with same letter in a column are not significantly different (P < 0.05; Tukey’s 
HSD). F = 39.35, df = 6, 2499, P < 0.001 

 



 

Table 8.7. Percent reduction of P. sp. nr. pubens populations over time post-treatment.  

 Time (%) 

Treatment 3 d 1 wk 2 wk 4 wk 8 wk 12 wk 

A (Phantom, Termidor) 100.0 95.6 90.1 96.0 78.8 70.2 

B (Phantom, Termidor-expanded) 99.9 98.9 100.0 96.6 93.4 93.8 

C (Phantom, Termidor, ACAB) 99.2 99.6 92.0 90.6 83.4 66.1 

D (no AI) -13.4 -41.4 -18.4 2.3 -16.9 -15.8 
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Figure 8.1. These pictures represent the large numbers surrounding structures and the 

potential electrical damage of P. sp. nr. pubens. A) Taken in June, this picture 

demonstrates the remarkable numbers of a graveyard of P. sp. nr. pubens workers prior 

to a treatment. B) P. sp. nr. pubens workers have shorted out this outlet. C) P. sp. nr. 

pubens have shorted out this electrical unit located in a the backyard in the Deer Park, 

TX neighborhood. These shortages had created several power outages for whole streets 

in the neighborhood.
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Figure 8.2. Mean number of P. sp. nr. pubens per vial by treatment over time. 
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Discussion 

The statistical difference among food resource means does not signify either 

food-resource as a more accurate indicator of P. sp. nr. pubens activity. The statistical 

difference of food resource means suggest food resource attraction shifts in P. sp. nr. 

pubens over time. These data demonstrate a significant shift from the 12 wk protein-

based food means and all other previous post-treatment protein counts. This suggests a 

significant increase in protein attraction during the 12 wk count. Also, 12 wk 

carbohydrate-based food results decreased significantly from the previous post-treatment 

carbohydrate counts. These results may suggest a transition in the attraction of food 

resources by P. sp. nr. pubens, reflecting a change from a more balanced selection of 

both protein and carbohydrates (found in pre-treatment counts). This P. sp. nr. pubens 

food resource attraction transition between 8 and 12 wk means, favors an increased 

protein-majority. These findings may also suggest, rather than using just one food 

resource, that use of both food resources is a more accurate indication of P. sp. nr. 

pubens activity during the months of July through October. These data may indicate a 

need for a temporally dynamic protein:carbohydrate bait mixture for control of P. sp. nr. 

pubens and to best indicate activity. However, more field and laboratory data will need 

to be gathered year-round and throughout multiple years to corroborate these results of 

P. sp. nr. pubens activity.  

Treatments A (Phantom SC and current label Termidor SC), B (Phantom SC and 

expanded label Termidor SC), and C (Phantom SC, current label Termidor SC, and 

ACAB) means were significantly different from treatment D (no AI) over all time (Table 
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8.4). This indicates all AI treatments were efficacious when comparing the no AI 

treatment D controls. There were no statistical differences among AI treatments over all 

times. All treatments were statistically equal in effectiveness. Although the differences 

are not significant, these data appear to indicate treatment B as the treatment of choice 

(Fig. 8.1).  

The statistical analysis using Tukey’s HSD may be too stringent regarding mean 

separation of treatments. Some residents still regarded individual treatments as a failure, 

despite a lack of overall statistical mean separation among AI treatments (Table 8.4). 

There may be a few explanations for this. Although P. sp. nr. pubens were present at or 

proximal to many of the bait stations, they did not necessarily enter into the baited vials. 

Perhaps; 1) the ants may have been repelled by the treatments and alternately gathered 

food sources in non-treated areas; 2) food in treated areas may have become an 

unneeded resource; or 3) a likelier cause is that AI treatments caused adverse effects 

regarding their physiology and/or behavior(s) associated with food attraction. 

Separating individual post-treatment counts from other post-treatment counts 

enabled a more precise view of treatment effects over time. This ensures examination of 

possible time-specific failure (or success) of treatments. By separating individual post-

treatment counts from all other post-treatment counts over time, an expectation of 

identical statistical conclusions should occur between pre- and post-treatment counts, 

assuming no differences between treatments. This data isolation enables a view of 

treatments whose pre-treatment means may have influenced the overall statistical 

conclusions of the experiment. When regarding statistical analysis of treatments by 
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isolating pre-treatment and 12 wk post-treatment data, statistical difference was found 

between treatment A and treatment D only (Table 8.5). The statistical similarity found 

between most treatments may indicate a failure of some treatments at 12 wk post-

treatment. The near inversion of means resulting from pre-treatment to 12 wk post-

treatment counts could suggest a trend of failure for treatments A and C. More data may 

be needed to corroborate this conclusion. 

There were significant differences among mean numbers of P. sp. nr. pubens 

over time (Table 8.6). These data indicate significant differences among pre-treatment 

counts and all post-treatment counts. This indicates efficacy of treatments in causing a 

decrease in overall population of the treated houses. These data also show a gradual 

increase of mean P. sp. nr. pubens during post-treatment counts, which may indicate 

reduced effectiveness of treatments near the end of the experiment. 

Percent reductions of P. sp. nr. pubens populations after treatment demonstrates a 

reduction from all AI treatments and an increase in control populations. The only 

treatment to offer consistent population control over the length of the study was 

treatment B. Control populations increased over time indicating that July may not be the 

month of highest P. sp. nr. pubens populations. 

Logically, the farther and longer an individual ant travels through treated areas, 

the greater the amount of insecticide they will encounter. Dependent upon availability of 

an AI, insecticide dose-responses have positive correlations. This is not necessarily a 

desired outcome with social insects where contact, grooming, and trophallaxis can cause 

death from collective sublethal doses. This delayed toxicity is a positive effect with 
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social insects. There may be a decreased likelihood of delayed toxicity when a greater 

surface area is treated. Exposure with treatment B (the highest probability for fipronil 

contact of the treatments) may have resulted in a decreased likelihood to display the 

desired delayed toxicity (Table 8.4). The greater surface area treated with Termidor SC 

surrounding the structures may have caused a more rapid morbidity or death to the ants 

because of increased exposure when compared to other treatments. This may have 

caused the un-hypothesized statistical similarity between treatments B and A. Despite no 

significant differences among AI treatments, these data demonstrate trends that indicate 

treatment B as the treatment of choice (Fig. 8.2). More evaluations should be evaluated 

to determine if lower (< 0.06%) fipronil concentrations are more effective when using 

the expanded usage Termidor SC (1 m up, 3 m out). 

Further investigations of biological activity of Termidor SC, Phantom SC and 

ACAB should include post-treatment counts of 6-12 mo. Further investigation of 

seasonal food resource attraction is needed in both the laboratory and field for more 

accurate estimation of activity and efficacy of further experimental treatments. The lack 

of statistical differentiation of treatment C to other AI treatments does not support the 

label-use of ACAB as a peripheral treatment with Termidor SC and Phantom SC. 

Additional multiple control strategy experiments against P. sp. nr. pubens should 

evaluate the use of ACAB in much greater quantities. Further investigations should also 

include treatment with only Termidor SC or Phantom SC, respectively.  

Exclusion of this pest may need to be integrated into the management strategy 

because of its associations with homopterans. It has been demonstrated that exclusion of 
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L. humile from homopteran sources may be an integral part of its population 

management (Shorey et al. 1996). Although exclusion techniques have been used 

successfully against S. incvicta (Pranschke et al. 2003) and L. humile (Rust et al. 1996, 

Klotz et al. 2003a), field reports from PCOs have indicated repeated and complete 

failures from using label rate repellents against P. sp. nr. pubens. These reports have 

indicated that under ideal conditions repellents have elicited ≤1 wk control of P. sp. nr. 

pubens. A more labor-intensive direct spray of all unapparent P. sp. nr. pubens nesting 

sites within the yard using Termidor SC should be investigated. This would greatly 

increase labor and costs associated with the treatment of P. sp. nr. pubens infested homes 

and structures; however, it would offer a more distinct zone of treatment. Sanitation was 

an issue with many residential homes and yards. Residents should be instructed to clean 

up yard debris, especially in structurally proximal areas. 

In spatially acute control areas, such as a residence located in a neighborhood, 

control difficulties of P. sp. nr. pubens are compounded. Desired areas of control 

encounter population influx from surrounding, untreated areas. If a single or biannual 

visit regimen for pest control operators is not discovered, successful control of P. sp. nr. 

pubens will require multiple visits. 

A comprehensive control program for P. sp. nr. pubens should include sanitation, 

vegetative maintenance, food and water resource prevention with repellants, 

supplementing with residual sprays and high quantity baiting. Satisfactory P. sp. nr. 

pubens control in neighborhoods may require that multiple residences or neighborhood-

wide control programs be initiated. The successes and failures of this study demonstrate 
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the difficulties associated with high density P. sp. nr. pubens infestations. The expanded 

label usage (1 m up, 3 m out) of Termidor SC demonstrate trends that support its use 

above the other presented treatments. Additional tactic(s) may need to be applied along 

side expanded Termidor SC in order to create longer term control of P. sp. nr. pubens 

and enhance consumer satisfaction. 
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CHAPTER IX 

 

EFFECTIVENESS OF TRANSPORT 50 WP, TALSTAR G,  

AND TOP CHOICE FOR CONTROL OF Paratrechina SP. NR. pubens  

(HYMENOPTERA: FORMICIDAE) 

 

Introduction 

 Given the myriad of current label insecticide products applied and deemed 

unacceptable for remedial control of Paratrechina sp. nr. pubens (Meyers et al. 

unpublished, Meyers and Gold unpublished c, d), other candidate active ingredients 

(AIs) are currently investigated. These unexamined products include TransportTM 50 

WP, Talstar G, and Top ChoiceTM.  

Acetamiprid, (E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-

methylacetamidine, is a neonicotinoid used as a contact and systemic insecticide 

(Thomson 2001). Acetamiprid blocks neuron activity causing paralysis (Yamada et al. 

1999, Kiriyama et al. 2003). Acetamiprid and other neonicotinoids are very toxic to 

insects yet very low in mammalian toxicity (Kagabu 1997, Yamamoto et al. 1998). They 

are used in both agricultural and urban systems. P. sp. nr. pubens is a recently introduced 

pest ant in Texas that feeds on honeydew produced by homopteran insects. With the 

excellent systemic activity of acetamiprid (Takahashi et al. 1999, Wang et al. 2004), it 

may be a candidate to increase effectiveness of P. sp. nr. pubens control. This control 

can occur because of direct population reduction of homopterans and also from 
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honeydew consumption by the ant. Negative effects on beneficial insects are always a 

concern when using systemic insecticide compounds. The use of acetamiprid in 

integrated control programs in agriculture systems with beneficial insects has caused 

significantly less predator mortality than other insecticides (Naranjo and Akey 2005).  

 Other potential control products may be needed to supplement a particular 

strategy for adequate control of numerically dense pests, such as P. sp. nr. pubens. 

Bifenthrin is a synthetic pyrethroid used primarily as a contact and stomach poison for 

arthropods (Thomson 2001). Bifenthrin, (2methyl[1,1’-bephenyl]-3-yl)methyl3-(2-

chloro-3,3,3-triflouro-1-propenyl)-2,2-dimethyl-cyclopropanecarboxylate, is a relatively 

stable compound in soil when applied at termiticidal rates (Baskaran et al. 1999). 

Bifenthrin has been formulated into a variety of insecticidal and repellant uses including; 

mosquito nets (Hougard et al. 2002, Chouaibou et al. 2006), exclusion of the red 

imported fire ant, Solenopsis invicta (Pranschke et al. 2003), direct contact and 

repellency of S. invicta (Oi and Williams 1996), and contact efficacy alone (Chen 2006). 

Successful control of a similar unicolonial ant, the Argentine ant, Linepithema humile, 

has been demonstrated using Talstar® PL granular (Klotz et al. 2007). 

Termidor® has been proven to significantly decrease P. sp. nr. pubens 

populations for three mo using an expanded label technique (Meyers et al. unpublished). 

Fipronil is a broad spectrum insecticide utilized with great success. Fipronil, 5-amino-1-

[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(1R,S)-(trifluoromethyl)sulfinyl]-1H-

pyrazol-3-carbonitrile, is a phenylpyrazole, a class of insecticides that act at the γ-

aminobutyric acid (GABA)-gated chloride channel (Kidd and James 1991, Cole et al. 
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1993). Fipronil has been utilized against insects in a number of ways. Successful control 

has been demonstrated after fipronil soil treatments against a unicolonial tramp ant, the 

Argentine ant, Linepithema humile (Costa and Rust 1998). Significant reductions have 

been found when using bait integrated with fipronil against L. humile and the red 

imported fire ant, Solenopsis invicta (Klotz et al. 2003, Collins and Callcott 1998, 

respectively). The use of fipronil barrier treatments against L. humile have resulted in 

successful population control (Soeprono and Rust 2004). Spot treatment using fipronil 

against L. humile has also greatly reduced activity (Klotz et al. 2007). The use of Top 

Choice (fipronil) against P. sp. nr. pubens has not been investigated, however, some 

PCOs have claimed successful control relative to other commercial products.  

 A recent introduction of an exceptionally pestiferous ant, Paratrechina sp. nr. 

pubens, in Texas has challenged the effectiveness of typical pest ant management. This 

pest ant has been a considerable nuisance for residents and businesses due to their 

remarkable numbers. Since its introduction, P. sp. nr. pubens has become an immense 

pest due to its density and ability to cause electrical shortages in a variety of equipment 

(outlets, sewage lift pump stations, air conditioning units, computers, pool pumps, etc.). 

Residents of a Pearland, TX neighborhood have reported these annoyances in addition to 

household incursions by P. sp. nr. pubens. Reportedly, a number of compounds have 

killed P. sp. nr. pubens, however, none have reached customer or pest control operator 

satisfaction. A population management plan using a variety of tactics should be 

investigated. Area-wide management plans may need to be implemented to combat the 

population influx of P. sp. nr. pubens from non-treated areas. 
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The synergy of two insecticidal compounds may increase the effectiveness of a 

control product. In this study, the formulation of acetamiprid and bifenthrin into 

Transport 50 WP along with Talstar G was evaluated against P. sp. nr. pubens. There is 

currently no published research on the use of Transport 50 WP on pest ants. This study 

intended to evaluate the efficacy of treatments including the commercially available 

Transport 50 WP (abamectin and bifenthrin) with Talstar G (bifenthrin), and Termidor 

SC (fipronil) with Top Choice (fipronil) against P. sp. nr. pubens.  

 

Materials and Methods 

Center for Urban and Structural Entomology personnel located structures with 

active infestations of Paratrechina sp. nr. pubens. A total of 12 houses were treated in a 

Pearland, TX neighborhood. Two treatments were used, including Transport 50 WP with 

Talstar G and Termidor SC with Top Choice G. Six replications per treatment were used 

for a total of 12 structures. All commercial products were used in a manner consistent 

with current label instructions. Treatments were conducted mid July 2007 and post-

treatment counts were continued until mid-August. Pre and post-treatment counts were 

done using baited vials (bait stations) at/or near the corners of the perimeter of each 

structure and/or near active trails. Bait stations included two vials containing hot dog or 

honey-water soaked cotton, respectively. Glass vials were placed in 2.54 cm diameter 

white PVC pipe to prevent overheating. Pre-treatment counts were conducted 1-2 d prior 

to treatment. Post-treatment counts were made on or about 2, 14, and 28 d after 

application.  
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Data were then analyzed using SPSS® software (SPSS 2005). Univariate 

ANOVA was conducted on these data to determine significant differences among 

treatments. Tukey’s HSD was used for means separation of means over time. A paired t- 

test was conducted for separation of treatments over time. Survival ratios were analyzed 

by dividing mean counts of all respective post-treatment counts by pre-treatment. This 

transforms the data for statistical conclusions within the treatments, but not between 

treatments. 

 

Results 

Statistical analyses did not indicate significant differences between the two 

treatments (t= 3.53, df = 191, P = 0.001) (Table 9.1). ANOVA of P. sp. nr. pubens 

means per vial over time demonstrate significant differences between counts (treatment 

1; F = 50.74, df = 3, 191, P < 0.001; treatment 2; F = 26.23, df = 3, 190, P < 0.001) 

(Table 9.2). Both treatments demonstrated effectiveness at 2 wk post-treatment, but were 

ineffective at 4 wk post-treatment. Survival ratios of mean number of P. sp. nr. pubens 

per vial for pre- and post-treatment counts did not demonstrate a statistical conclusion; 

however, showed slight differences in survival of the treatments (Table 9.3). 
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Table 9.1. Mean number of P. sp. nr. pubens per vial (±SE) by treatment over all time 

counts. 

Treatment Mean # of P. sp. nr. pubens per vial (± SE)a 

Transport/Bifen granules 45.99 (4.54) 

Termidor/Top Choice 29.17 (3.73) 

a t= 3.53, df = 191, P = 0.001 

 

Table 9.2. ANOVA of mean number of P. sp. nr. pubens per vial (±SE) over all time. 

 Mean (± SE) # of P. sp. nr. pubens per viala 

Time  Transport/Bifen granulesb Termidor/Top Choicec 

0 98.90 (9.45) a 62.08 (9.14) a 

2 d 0.0 (0.0) b 0.0 (0.0) b 

2 wk 10.1 (3.20) b 3.15 (1.92) b 

4 wk 74.96 (9.25) a 52.51 (8.65) a 

a Means with same letter in the column are not significantly different (P < 0.05; Tukey’s 
HSD). 
b F = 50.74, df = 3, 191, P < 0.001 
c F = 26.23, df = 3, 190, P < 0.001 
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Table 9.3. Survival ratios of mean number of P. sp. nr. pubens per vial for each post-

treatment count against pre-treatment counts during Transport/Bifen granules and 

Termidor/Top Choice treatments. 

 Survival ratios between time intervals 

Treatment Time 2 d Time  2 wk Time 4 wk 

Transport/Bifen granules 0.00 0.10 0.76 

Termidor/Top Choice 0.00 0.05 0.83 

 

Discussion 

 Neither treatment was determined to be successful at 4 wk post-treatment. 

Granular applications were activated, as sufficient rainfall (0.29 inches on July 12, 2007, 

Underground Weather) occurred in the evening after all treatments were completed. 

Previous field observations from both researchers and pest control operators have 

suggested that there have been temporally varying post-application population influxes 

despite treatments. The post-treatment count at 4 wk may have been during a population 

influx that may have eventually been controlled by the treatments. However, this is 

unlikely as several residents complained the population influx had been occurring for 

several days prior to the 4 wk count. Due to this observed occurrence, several residents 

determined the treatments a failure (from field interviews with present residents). 

 If the study had included control-treatment (no active ingredient) experimental 

units, the populations at control homes infested with P. sp. nr. pubens may have 
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increased throughout the time of the study and given a more accurate estimation of 

treatment success or failure. 

The 4 wk post-treatment P. sp. nr. pubens mean were not significantly different 

from the pre-treatment counts. These statistical conclusions may be misleading. The use 

of control replications may have indicated successful treatments despite the lack of 

statistical disparity in the current study. Control replication populations of P. sp. nr. 

pubens may have increased during the experiment, which could have indicated treatment 

success. The use of control replications would offer a more accurate representation of 

the reality of temporal population fluxes that are inherent throughout the length of the 

study. Previous studies have shown (Meyers et al., unpublished) that typical baited vial 

entrance by P. sp. nr. pubens is skewed when placed in treated areas. This is likely due 

to the negative physiologically and/or behavior reactions to AI treatments. However, in 

urban areas often times “control” homes are impossible due to homeowner concern of 

safety issues and non-experimentally designed consumer control efforts. These concerns 

may preclude scientific accuracy in evaluating effectiveness of AIs under “actual” 

conditions. 

 Combining other successes from behaviorally similar pest species, L. humile may 

assist population management practices regarding P. sp. nr. pubens. The use of spot 

treatments against L. humile demonstrated activity reductions (Klotz et al. 2007) and 

should be investigated against P. sp. nr. pubens. Although not demonstrated in this study 

successful population management has occurred against L. humile using bifenthrin 

granules (Klotz et al. 2007). This may indicate that bifenthrin either induces 
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susceptibility in L. humile, has ineffective activity against P. sp. nr. pubens, or an 

unknown cause occurred creating reduced control of P. sp. nr. pubens throughout time. 

 Given the rapid kill demonstrated by bifenthrin (11 to 34 min) (Soeprono and 

Rust 2004), bifenthrin may act as a repellent as well as causing rapid recognition of 

mortality within treated areas. Delayed toxicity is a critical factor when using baits 

against L. humile (Rust et al. 2004). The success of Termidor against P. sp. nr. pubens 

(Meyers et al. unpublished) may be from the relatively delayed toxicity presented by 

fipronil (270 to 960 min.) against L. humile (Soeprono and Rust 2004b). It has been 

proposed that fipronil is transferred through trophollaxis (Hooper-Bui and Rust 2000) 

and through contact alone (Soeprono and Rust 2004a, b). Whether fipronil may or may 

not be ingested, this delayed toxicity can allow the product to act in similar function as a 

bait due to the delayed response to treated areas. To the contrary, nonrepellent 

insecticides (including fipronil) do not fit the liquid bait models (e.g. the Formosan 

subterranean termite, Coptotermes formosanus) (Su 2005). Some pest control operators 

have suggested that the use of both Termidor and Top Choice, both of which contain 

fipronil, against P. sp. nr. pubens is highly effective against P. sp. nr. pubens in the field 

compared with other treatment regimes. Therefore, it was surprising that there was 

complete failure of the treatment. This demonstrates the variability that likely occurs 

from one application to another and underscores the need for a more consistent delivery 

mechanism for remedial control efforts against this ant. This may also imply the need for 

control programs for P. sp. nr. pubens population management to begin earlier in the 

season, as there are extremely high numbers during the months of the current study. 
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The formulation of an insecticide that contains both a slow and quick-acting 

compound (acetamiprid and bifenthrin, respectively) may not be effective against P. sp. 

nr. pubens. The neighborhood presented an ideal environment for pesticide activation 

(rain) and avoidance of compound degradation (shade). As previously discussed, 

sufficient rainfall had occurred in order to activate the granular products (Talstar G and 

Top Choice). Most residences had high amounts of shade from large trees and 

considerable amounts of vegetation from landscaping and gardens. Evapotranspiration 

(from urban vegetation) can result in both reduced air temperature and increased 

humidity (Sailor 1998). These characters likely decreased temperature and increased 

humidity and moisture. This environment may not be advantageous for all insecticides. 

These environmental parameters may not be advantageous for environmentally non-

persistent insecticides such as neonicotinoids. The results of the study may indicate that 

these characters are more advantageous for P. sp. nr. pubens than either treatment. 

Results suggest suppression for 2 wk but ultimately no control of populations. A 

combination of AI tactics are most likely going to be the best chance at elimination on 

small scales, or when possible, coordinate neighborhood efforts. Considerable research 

will need to be done regarding the biological activity of many current insecticides and 

novel chemistries against P. sp. nr. pubens before ideal treatments and subsequent 

management plans are discovered. The relative unsuccessful treatments presented in the 

current study underscore the difficulties of finding effective treatments. Further studies 

should be employed that consider early season treatment of P. sp. nr. pubens when 

populations are smaller and more manageable. An integrated urban pest management 
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plan for P. sp. nr. pubens is needed. This plan will need to consider a temporally 

comprehensive treatment plan that includes sanitation, vegetation maintenance and 

multiple insecticide tactics. 
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CHAPTER X 

 

CONCLUSIONS 

 

Morphometric and phylogenetic analyses of Paratrechina sp. nr. pubens revealed 

inconclusive results regarding its identification. More comprehensive sampling and/or 

diagnostic evidence is needed to discover the taxonomic position of P. sp. nr. pubens. 

Therefore, the taxonomic identity of P. sp. nr. pubens populations in Texas will remain 

unchanged. The phylogenetic study of P. sp. nr. pubens and other P. spp. is the first 

significant endeavor describing the phylogenetic relationships among several 

Paratrechina species. The study found misidentifications of Paratrechina samples. The 

conclusions also may reflect paleogeographic events within the complex Fulva. The 

results may suggest that the three clades presented as one species, P. pubens. This 

procedure may also offer proof that an undescribed species may cause deleterious 

ecological and economical effects to Texas and St. Croix. More research regarding 

behavior, mating compatibility, phylogeny, or other analyses of these populations should 

be conducted before raising the P. sp. nr. pubens Texas populations to the status of an 

undescribed species.  

As this dissertation was being concluded, preliminary conclusions from a 

concurrent Paratrechina spp. phylogenetic study, conducted in collaboration with the 

author, was received. These analyses cladistically identified the P. sp. nr. pubens 

populations investigated herein, as P. pubens. These findings corroborated the current 
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conclusion presented herein, that a more comprehensive sampling of P. pubens and near 

pubens was needed to positively identify this pest species. These populations of P. sp. 

nr. pubens and P. pubens constitute a monophyletic invasive species that remains 

irrelevant to the overwhelming demand to more carefully evaluate this introduction 

event and subsequent spread. This species is a very important invasive pest and the 

future authoritative identification of these populations is imperative for possible 

remedial control scenarios. 

Given its establishment in South Texas and the synanthropic behavior of P. sp. 

nr. pubens, continued introductions are unavoidable without local, state and/or federal 

expansion-preventing measures in place. Should this ant spread to further locations 

outside the current area of infestation, it may become a regionally exotic species with 

remarkably harmful consequences. 

The relative success of the laboratory study on dinotefuran against P. sp. nr. 

pubens warrants further evaluations and initial field effectiveness investigations. These 

findings may assist pest control operators during their efforts to control the numerically 

superior pest.   

The failure of the IGR, novaluron, in a laboratory study against P. sp. nr. pubens 

underscores the difficulties of maintaining relatively small, queenless colonies of P. sp. 

nr. pubens in the insectary. Although it is not known whether the lack of queens 

adversely affected the outcome of the study, it could be one of the contributing factors.  

P. sp. nr. pubens are considerably attracted to the Advance Carpenter Ant Bait 

(ACAB) matrix in the laboratory and field. It is therefore recommended that ACAB with 
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novaluron be tested against large laboratory colonies (with a full compliment of castes) 

or in the field. Field observations suggest an immense increase in numbers of P. sp. nr. 

pubens brood and worker members during early spring. During this period, foraging for 

food sources high in protein is needed for brood production. ACAB contains a 

crustacean lipid based attractant. Therefore, this product may be a viable option as part 

of a temporally dynamic control program against P. sp. nr. pubens.  

The study of ACAB amended with dinotefuran against P. sp. nr. pubens 

represents the only field effectiveness evaluation against insects using ACAB with 

dinotefuran to date. This field experiment demonstrated initial population reduction of 

overwhelming numbers of P. sp. nr. pubens. The lack of consistent temporal P. sp. nr. 

pubens control indicates the need for larger concentrations and/or rates of ACAB with 

dinotefuran. Additional temporal applications of ACAB with dinotefuran against P. sp. 

nr. pubens should be evaluated. Also, an integration of an ACAB with dinotefuran 

treatment into a temporally comprehensive control strategy should be investigated. The 

likely application of ACAB with dinotefuran may be more effective within a 

comprehensive control plan for the numerically superior P. sp. nr. pubens.  

The use of current and expanded label insecticide usage against P. sp. nr. pubens 

revealed a variety of conclusions. A temporally comprehensive control program for P. 

sp. nr. pubens should include sanitation, vegetative maintenance, food and water 

resource prevention with repellants, supplementing with residual sprays and high 

quantity baiting. Satisfactory P. sp. nr. pubens control in neighborhoods may require that 

multiple residence or neighborhood-wide control programs be initiated. The successes 
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and failures of this study demonstrate the difficulties associated with high density P. sp. 

nr. pubens infestations. The expanded label usage (1 m up, 3 m out) of Termidor SC 

demonstrate trends that support its use above the other presented treatments. Additional 

tactic(s) may need to be applied along side expanded Termidor SC in order to create 

longer term control of P. sp. nr. pubens. 

The formulation of an insecticide that contains both a slow and quick-acting 

compound (acetamiprid and bifenthrin, respectively) may not be efficacious against P. 

sp. nr. pubens. Results suggest suppression for 2 wk, but ultimately no control of 

populations through time. A combination of pesticide tactics are most likely going to be 

the best chance at elimination on small scales, or when possible coordinate 

neighborhood efforts. The Pearland, TX neighborhood represented an ideal environment 

for pesticide activation (rain) and avoidance of compound degradation (shade). This 

environment may not be advantageous for all insecticides. These environmental 

parameters may not be advantageous for environmentally non-persistent insecticides 

such as neonicotinoids. The results of the study may indicate that these characters are 

more advantageous for P. sp. nr. pubens than either treatment. 

Considerable research will need to be done regarding the biological activity of 

many current insecticides and novel chemistries against P. sp. nr. pubens before ideal 

treatments and subsequent management plans are discovered. The relative unsuccessful 

treatments presented in the current study underscore the difficulties of finding 

efficacious treatments. Further studies should be employed that consider early season 

treatment of P. sp. nr. pubens when populations are smaller and more manageable. An 

 



 

 

146

integrated urban pest management plan for P. sp. nr. pubens is needed. This plan will 

need to consider a temporally comprehensive treatment plan that includes sanitation, 

vegetation maintenance and multiple insecticide tactics. 

The biological and temporal caveats associated with successful invasive 

populations of social arthropods are quite complex. It is a rare scientific opportunity to 

follow the incipient biology of an unexpected, invasive, and dominant pest. Information 

and conclusions gained from these and future studies on P. sp. nr. pubens populations of 

Texas may assist research of other impending arthropod invaders, especially social 

insects. 
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